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Inverted oscillator: pseudo hermiticity and coherent states
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Itis known that the standard and the inverted harmonic oscillator are different. Replacinglliusiw in the regular oscillator is necessary

going to give the inverted oscillatdii”. This replacement would lead to anf*7 -symmetric harmonic oscillator Hamiltonigrr: H°®).

The pseudo-hermiticity relation has been used here to relate th@@riymmetric harmonic Hamiltonian to the inverted oscillator. By

using a simple algebra, we introduce the ladder operators describing the inverted harmonic oscillator to reproduce the analytical solutions.We
construct the inverted coherent states which minimize the quantum mechanical uncertainty between the position and the momentum.
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1. Introduction parity operator, and” is the time-reversal operator) [22, 23].
The concept o7 -symmetry has found applications in sev-
The inverted oscillator, equipped with a potential exerting aeral areas of physics. Once the non-Hermitian Hamiltonian
repulsive force on a particle, has been widely studied [1-18]H is invariant under the combined actionf (i.e. H com-
Such system can be completely solved as the standard hanutes withP7) and its eigenvectors are also those of HE
monic oscillator whose properties are well known. operator, then the energy eigenvaldgsf the system are real
However, the physics of the inverted harmonic oscilla-and in this case th®7 -symmetry is unbroken.
tor is different, because its energy spectrum is continuous An alternative approach to explore the basic structure re-
and its eigenstates are no longer square integrable.The isponsible for the reality of the spectrum of a non- Hermi-
verted oscillator can be applied to various physical systemgan Hamiltonian is by the notion of the pseudo-hermiticity
such as [1,19-21], the tunneling effects, the mechanism ahtroduced in Ref. [24]. An operatd¥ is said to be pseudo-
matter-wave bright solitons, the cosmological model, and thélermitian if
guantum theory of measurement.
In fact, the predominant idea in the literature is that the
inverted oscillator is obtainablg from the harn"lnonic.oscilla-Where the metric operator
tor by the replacement — =iw. Of course, in spite of
many useful analogies, it is important to know that the two -1 _ (,t )7t
. . : . pynt=(p"p) ", @)
oscillators (harmonic and inverted) reveal different charac-
teristics. In other words, the inverted oscillator generates & a linear, invertible and Hermitian operator, we say that the
wave packet which are not square integrable and there is ndamiltonian is pseudo-Hermitian or quasi-Hermitian if it sat-
zero-point energy. In comparison with the harmonic oscilla-isfies the relation).
tor, the physical applications of the inverted harmonic oscil- The pseudo-Hermiticity allows to link the pseudo-
lators are limited, since their Hamiltonian is parabolic and theHermitian Hamiltonian # with an equivalent Hermitian
eigenstates are scattering states. The analytic continuation bBfamiltonianh
angular velocityw — +iw performs a transformation of a
non-Hermitian harmonic oscillatdrriH°%) to inverted one h=pHp™, 3)
H".

H' =nHn™, 1

n=np'

In general, non-Hermitian Hamiltonians have been use here the operatop called Dyson operator is linear and
9 ’ %vertible. Due to the energy spectrum @fiH°%) being

to describe several physical dissipative systems. Such Hamil- g ; . _ . .
. " L completely imaginary, we notice théti H°®) is anti-P7 -
tonians do not cause a legitimate probabilistic interpreta- pietely ginary iH) P

tion due to the shortage of the unitarity condition in theirsymmetru:l.e.

corresponding quantum description. In non-Hermitian quan- PT(+iH®)PT = (FiH). (4)
tum mechanics it, was found that the criteria for a quantum

Hamiltonian to have a real spectrum is that it possesses an We recall that aP7-symmetric system can be trans-
unbrokernP7 symmetry P is the space-reflection operator or formed to an antiP7 -symmetric one by replacing/°®* —
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(+iH°*®) [25-28], which changes the physical structure of  From this, we can evaluate that the energy eigenvalues
the system. In other words, a Hamiltonizhis said to be

anti-P7 -symmetric if it anticommutes with th®7 opera- Hp? (x) = Epp®(x)
tor {P7,H} = 0. In analogy with thePT-symmetric case, 1
we call the antiP7T-symmetry of Hamiltonian unbroken = hw (n + 2) voi(x); neN, (9)

if all of the eigenfunctions off are eigenfunctions oP7,
i.e. when the energy spectrum éf is entirely imaginaryE”  anq the normalized condition for the eigenfunctions is veri-

= 1B [29]. fied
In this paper, we generate from the aftF-symmetric
Hamiltonian (+iH°%) an inverted Hermitian harmonic (25 |2%) = . (10)

oscillator-type H” and also its solution. In Sec. 2, we re-

call briefly some properties of the standard harmonic and inwe see that the energy eigenvalugs= 7w /2 of the ground
verted oscillators In Sec. 3, introducing an appropriate quanstate

tum metric, we link the antiP7-symmetric Hamiltonian

. . . . . . 1 wm\ 1 wm
(+£iH°*) to the inverted oscillator HamiltoniaH ™. This pro- 05 (1) = (7) exp {_7:[2} 7 (11)
cedure allows us to obtain the pseudo-ladder operators, the 0 V2rn! \ Th 2h

set of SO_IUt'OnS and _also to defme_the full orthonor_mahzg-is a very significant physical result because it tells us that the
tion relation of the eigenstates for inverted harmonic oscil-

lator H”. In Sec. 4, using the pseudo-ladder operators, Wenergy of a system described by a harmonic oscillator poten-

. . %al cannot have zero energy.
will address the problem constructing of coherent states as- . oy- . .
In contrast with the harmonic oscillator, the inverted os-

sociated to inverted oscillatéf”. We obtain the mean values . A . . ]
. . cillator has a Hamiltonian with the following form:
of the position and momentum operators in the evolved co-
herent states and furthermore we calculate the corresponding . 1, 1 5, 2 2
Heisenberg uncertainty. An outlook over the main results is 4 = 51" — QMW =" (a™ +a”). (12)

given in the conclusion.
The Hamiltonian/12) is formally obtainable from5) by

2.  Summary of standard harmonic and the in- the replacement

verted oscillators w — iw, (13)
Let us recall briefly the ladder operator approach of the Usuaéimilarly the cas€—iw) would serve equally well.
harmonic oscillator: On the other hand, for an imaginary frequeniog, for
o5 _ 2ip2 n %mwaz _ % (a*a+aa*), (5) theinverted harmonic oscillator, we get
m
where = [ [mw D )
a— A=e' —x+ , 14
a= %x—&-i p < 2h V2mwh (14)
2h omhw’ - - mw P
a+—>A:el4( —x — ), (15)
i [mw . p V 2R 2mwh
a' = ﬁx -1 , (6)
o Zmhw . . thus, the Hamiltoniaril2) can take the following form
The operatorg anda™ satisfying the commutation relation
. B
[a,a'] = 1. (7) H™ = Z2(AA+ AA), (16)

Were introduced to facilitate the solution of the eigen- - B
value problem. Eigenstates of)(in Fock space are Wwhere the non-Hermitian pseumdderoperator(sA,A) are
the Fock or number states)°® with the eigenvalues characterized by, A] = 1 in an analogous way to the lad-

w(n+1/2)), wherea|n)*® = n|n—1), at|n)* =  der operatofa, at) for the harmonic oscillator.
Vn+1|n+ 1)° andn is a non-negative integer. Knowing that the eigenfunctions of the harmonic oscil-

We then have a nice mechanism for computing the eigenlator are normalized, we ask the question if the inverted os-
states of the Hamiltonian, but we can also express expectatigillator eigenfunctions are also normalized? Clearly, they are
values using the raising and lowering operators. This leads t80t (¢;,, [¢},) # dmn- This can be seen when calculating the
the useful representation ofandp: normalization condition for the pseudo-ground stg}éx) of

the obtained inverted oscillator: from E4.1j by changingv
=1/ h (a’ +a) p=1i hwm(aT—a) (8) toiw
wm ’ 2 ’
such that, we can compute any arbitrary expectation values i, 1 (wm>i [
exp |—

Wwm 4
that depend upon these quantities, merely by knowing the ef- ~ ¥0(2) = 0 v } - (1
fects of the raising and lowering operators upon the eigen-

states of the Hamiltonian. i
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One can easily verify that the normalization for this state diverges as follows:

+o00 N
w ey = [ @ (e)de = o (D) / dr — oo, (19

the reason for this divergence is that the substitutiday iw is unsuitable. we will remedy this inconsistency in what follows.

3. Pseudo-ladder operators in the inverted harmonic oscillator

The Hermitian Hamiltoniari{ ™ and the non-Hermitian HamiltonignH °®) are related by a formal replacement- iw. The
challenge is to establish a consistent relation between the quantum mechanical formalism for the Hermitian Ha#iltordan

the non-Hermitian on¢ H°®), we propose that instead of considering this formal transformation, we use the relation that it
is valid for any self-adjoint operator.e. observable, in the Hermitian system to possess a counterpart in the non-Hermitian
system given by

p L(iH%)p=H". (29)

In order to connect the non-Hermitian harmonic oscillator Hamiltofi#ff®) to the Hermitian inverted oscillatdi”, we
perform a Dyson type transformatigrsuch that [30]

2 12 2 In® 1 12
—expd 2| (atat t i) ) G LR 9,
p exp{ 2[2(aa+2 +,u_2+u+2 exp 19_2 exp 5 aa+2 exp 19+2 , (20)

and

244 sinh 6 € )
vy = , 19:( ‘h@—f‘h(Q) _ S
T Ocosh® — esinh @ 0 cos 0 sin Kb X
24— sinh 0 cosh ¢ + 5 sinh ¢
B ’ = 0= —dup, 21
fcoshf —esinh6' X~ coshf— §sinhf’ € —dpyp (21)

wheree is a real parameter whereas andy._ are complex ones.
With the help of the following relations

exp >19_ %] (aTa + %) exp {—19_ %} = (aTa + %) +9_a?

_ f (22)
exp 19.5_%} (aTa + %) exp [—19+a7“] = (aTa + %) — Y at?
exp [222 (afa + 1)) aexp [~12 (ala+ 3)] = £

(23)

exp 19+ 5 } a® exp [ 9 —} =a?—294 (ala+ 1) +92al?
exp [ (aTa + ) a'? exp [ % (aTa + %)] = Ypalt?

[ 2 2 (24)
exp [¥_ %] a'? exp [719_ %} =af?2 +29_ (aTa + %) + 92 a?

we deduce, under the action of the operatahe transformed Hamiltonian of the harmonic oscillator :

1 1
p THp = hwp™! (aTa + 2) p= ﬂ@ {[190 —20,9_] <aTa + 2) + [9_0% — 904 ] a™ + 19_a2} ) (25)
0

We notice that Eq.25) and Eq. 12) have the same structure in their operator content provided that we impose on the
parameter$d ., 9_, ) the following conditions

0, = —i, ) = % 9o = 1, (26)
from these constraints, the Dyson operator 26) takes now the simplified form
R 2 1 ap | = Lt 2
p exp{ 4a}exp[2 }, P exp{ 50 ]expha}7 (27)
it follows that the two Hamiltonian&/°* and H" are allied to each other as
hw
p THp = i— 5 (a'? +a®) = —iH". (28)

Rev. Mex. Fis69010401
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One can verify that in the case of the inverted oscillator,

the form of Hamiltonian in the last equation looks like
o — thw

= S (AA+ AA),

(29)

where the pseudtadder operatorgA, A) are linked to the

ladder operator<) through the transformation

A=plap=a+ial, (30)

A=ptalp= % (aT + ia) , (32)

and satisfy the following commutation relatigm, A] =
1.Then, we can deduce that their Fock eigenstatés are
related ton°°) by the invertible operatags as

") = p~" In®%). (32)

For instance, the pseudo-Hermitian quadratt€spP)

Taking another time derivative d@fX/dt, we get the usual
equation of motion for the inverted oscillator
d*X

— — WX =0,

2 (40)

4. Coherent states for the inverted oscillator

The best way to present the inverted coherent states is by
translating their definitions into the language of the coher-
ent states of the harmonic oscillator which are summarized
in what follows. Coherent states, or semi-classic states, are
remarkable quantum states that were originally introduced in
1926 by Schidinger for the Harmonic oscillator [31] where
the mean values of the position and momentum operators in
these states have properties close to the classical values of the
positionz..(¢) and the momentum,(t). In particular, the co-

corresponding in the Hermitian system to the coordinate antierent states of the harmonic oscilldte¥) [32]- [34] may
momentum operator&e, p) (see Egs. [8)) respectively, are be obtained in different but equivalent ways:

now

h .
X=plap =g e (@ +a)p

7 -
=\ 5o (A+4), (33)
P =p‘1pp=i\/@p‘l (a' —a)p
=iy (A ). (34)

Knowing that any observablein the Hermitian system
possesses a counterpértin the pseudo-Hermitian system

given by
(39)

one can deduce the useful representatiofbf4) in terms
of (X, P) as

O =p~lop,

mw
A=/—X +1 P.
2h ! omhw (36)
- [mw
A=,/—X —1 P. 37
2h ! 2mhw (37)

Thereby, the Hamiltoniar2Q) can be written in terms of

X andP as

(38)

H = i ( +mw2X2> .
2\ m

This leads to the equations of motion of the inverted os-

(i) as eigenstates of the annihilation operator;

ale)” = ala)”, (41)
with eigenvalues € C.

(i) as a displacement of the vacuqmas, where the dis-
placement operator

D% (a) = expla*a’ — aal, (42)
can be used to generate the coherent state
) = D% (a) 0)**, (43)

(i) as states that minimize the Heisenberg uncertainty
principle

AxAp = g (44)

Coherent states form an over-complete set of states. The
identity operatod is written in terms of coherent states as

1 0s 0s o
- / |a) (o] Pa=1. (45)

cillator. Indeed, using the Heisenberg equations of mOtlor]I'he solution for the harmonic oscillator Hamiltonian for an

and[X, P| = ih, we have forX andP:

; 2
m

p
i in |2 Y
ar _ 1
dt  ih

2

{p, ‘ (P i mw2X2>] — im?X. (39)
2\m

initial coherent state is given in the following simple form

(46)

|a’t>os _ e—i%” ’ae—iwt>05 ,

i.e., a coherent state that rotates with the harmonic oscillator
frequency.

Rev. Mex. Fis69010401
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In analogy with the usual coherent states, we use theand then the integral
pseudeannihilation4 = p~lap and pseudereationA =

~1gt i i in-

p~a'p operators which are very convenient to study the in 1 "o T

verted coherent states. We emphasize the use of the met- T play "lalpTdatda =1, (53)
ric n = plp operator such agiH**)" = n(iH**)n~!, c

e. (1¢H°*®) is n-pseudo-Hermitian with respect to a positive-

definite inner product defined ky. ), = (.In].) : 's an identity operator.

These inverted coherent stateg” can also be gener-
"(n|n|m)" = ° (n |m)°° = Gpn, (47)  ated respectively from the vacuum staf@s by the action
of pseudo-displacement operafor («),
which indicates that the Fock states are linked to each other
as la)" = D" (a) |0)" = exp [az — a*A} 10)", (54)
In)" =p~tn)"*, (48)

additionally, the vacuum state of the inverted oscilld@f
(A]0)" = 0) and the vacuum state of the harmonic oscillator D" (o) = p~ D% () p. (55)
|0)°* are related af))” = p=1[0)**.

The coherent states for the inverted harmonic oscilla-  Using the Hamiltonian29), we deduce the evolution of
tor are defined as eigenstates of the corresponding pseudan initial inverted coherent state in the following simple form
annihilation operatoa

we note thatD" («) is related taD°® («) as

o, 1) = e/ )

Ala)" = ala)”, aeC. (49)
with —e —lal?/2 wt/2 wAAt | > (56)
T 1 0s Z \/7
o = " )" (50) 7
Particularly, the normalization condition Introducinge“#4 into the sum, and using the fact that
the state$n)” are eigenstates of the number operdtdr we
o j)™ =1, (51)  have
leads to ot wtyn
oy el 2y Q)T
"lalnle)" =1, (52) w vl

| —ewt/2 }aemy. (57)

Since our aim is to compute the Heisenberg uncertainty relations in the position and the momentum, it is required to
calculate the expectation values of the canonical variables and their squares in the inverted coherent states. Then, by usin
the relation[85) in the non-Hermitian system, the expectation value of an arbitrary opedater X, X2, P and P? can be
evaluated from

uf|2

(0), =" (a,t[10]a, )" =" (a,t| p*opla,t)” = e ZZ r ‘“}’/°S<mo|n>‘”. (58)

Using the above equation, the expectation valuek aind P in the statda, t)" are easily evaluated:

(X), = el ZZ r aef) oot (m (af +a) [0} = 4/ 5 [+ 0], (59)

< > _|(ye“"| ZZ i/: (Oé\€/>) /ﬁwm 0s <m‘ ((IT _ a) |n>os — mT‘Uhf [a - Oé*] ewt7 (60)

and follow classical physicse.

<X>77 = L, <P>n = Pe; (61)

where the subscriptindicate classical. This is why we call these inverted coherent states "quasi-classical states”.

Rev. Mex. Fis69010401
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Let us now evaluate the uncertainty in the position and the momentum.

2 2 T h 2 2wt *2 2wt 2 2wt 1
<X >n = (o, t|nX*|a,t) = Yo {a et +atet + 2 (a| et + 2)} , (62)
2 2 r_ —imwh o o %2 2wt 2 9wt , 1
(P >n = (o, t|nP* |, t) = 5 [a e?t +atet — 2 <a| e*t + 2)} . (63)
It is well known that the position uncertainty can be de-
rived from AX = <X2>7} _ <X>f,. Then using89) and ha_rn_19nic oscillator. These opgrators are Fhe basis of the
(62), we have definition of coherent states for inverted oscillator and their
corresponding eigenstates and eigenvalues. Once the Dyson
AX — L operator has been introduced, and therefore the metric oper-
2mw ators, it is straightforward to extend these considerations to
Similarly, from Egs. 60) and 63), we also have the mo- the associated eigenstates and inner product structures on the
mentum uncertainty such that physical Hilbert space. Some of the findings are treated by
the Gaussian wave packet (in the@epresentation) associated
AP — M to the generalized coherent state in Ref. [35].
2 Coherent states of the inverted harmonic oscillator are

Thus, the uncertainty product for canonical variables —constructed in different forms:

andP is given by

. (1) as eigenstates of the pseualonihilation operatod;
AXAP = —. ) )
2 (2) as a pseuddisplacement of the inverted vacuum

Therefore, the inverted coherent states are a minimum- exp [@A — a*A] |0)",
uncertainty states and the time evolution of an initially in-
verted coherent state can be regarded as the quantum analo§3) as states whose averages follow the classical trajecto-
of a classical trajectory. ries of X', P andH".

. However, the coherent states for the inverted oscillator
5. Conclusion constitute "minimum uncertainty” wave packets. Therefore,
Ehe time evolution of an initially coherent state can be re-

We have briefly summarized in Sec. 2, some properties of th . .
y prop garded as the quantum analog of a classical trajectory.
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