SciELO - Scientific Electronic Library Online

 
vol.59 número4Catodoluminiscencia en películas de óxido de hafnio activadas con europio y terbio, depositadas por la técnica de RPUTribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.4 México jul./ago. 2013

 

Research

 

SL(2,R)-geometric phase space and (2+2)-dimensions

 

R. Floresa, J. A. Nietob,a, J. Telleza, E. A. Leonb, and E. R. Estradac

 

a Departamento de Investigación en Física de la Universidad de Sonora, 83000, Hermosillo Sonora, México. e-mail: rflorese@gauss.mat.uson.mx; jtellez@cajeme.cifus.uson.mx.

b Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Sinaloa, 80010, Culiacán Sinaloa, México. e-mail: niet@uas.edu.mx; janieto1@asu.edu; ealeon@uas.edu.mx.

c Instituto Tecnológico Superior de Eldorado, Eldorado, Sinaloa, México. e-mail: profe.emmanuel@gmail.com.

 

Received 23 November 2012
Accepted 19 April 2013

 

Abstract

We propose an alternative geometric mathematical structure for arbitrary phase space. The main guide in our approach is the hidden SL(2,R)-symmetry which acts on the phase space changing coordinates by momenta and vice versa. We show that the SL(2,R)-symmetry is implicit in any symplectic structure. We also prove that in any sensible physical theory based on the SL(2,R)-symmetry the signature of the flat target "spacetime" must be associated with either one-time and one-space or at least two-time and two-space coordinates. We discuss the consequences as well as possible applications of our approach on different physical scenarios.

Keywords: Symplectic geometry; constrained Hamiltonian systems; two time physics.

 

PACS: 04.20.Gz; 04.60.-Ds; 11.30.Ly

DESCARGAR ARTÍCULO EN FORMATO PDF 

 

Acknowledgments

This work was partially supported by PROFAPI-UAS 2009.

 

 

References

1. J.M. Maldacena and H. Ooguri, J. Math. Phys. 42 (2001) 2929; hep-th/0001053.         [ Links ]

2. E. Witten, Phys. Rev. D44 (1991) 314.         [ Links ]

3. O.F. Hernández, "An Understanding of SU(1,1) / U(1) conformal field theory via bosonization" , Presented at 4th Mexican School of Particles and Fields, Dec 2-12, 1990, (Oaxtepec, Mexico. Published in Mexican School 1990), 429-436.         [ Links ]

4. S. Hwang, Nucl. Phys. B354 (1991) 100 .         [ Links ]

5. I. Bars, Class. Quant. Grav. 18 (2001) 3113 ; hep-th/0008164.         [ Links ]

6. I. Bars, C. Deliduman and O. Andreev, Phys. Rev. D 58 (1998) 066004; hep-th/9803188.         [ Links ]

7. I. Bars, Int. J. Mod. Phys. A 25 (2010) 5235; arXiv:1004.0688 [hep-th]         [ Links ].

8. J.A. Nieto, Nuovo Cim. B120 (2005) 135; hep-th/0410003.         [ Links ]

9. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, New Jersey, 1992).         [ Links ]

10. J. Govaerts, Hamiltonian Quantisation and Constrained Dynamics (Leuven University Press, Leuven, 1991).         [ Links ]

11 . A. Hanson, T. Regge and C. Teitelboim, Constrained Hamilto-nian Systems (Accademia Nazionale dei Lincei, Roma, 1976).         [ Links ]

12. V.M. Villanueva, J.A. Nieto, L. Ruiz and J. Silvas, J. Phys. A 38 (2005) 7183; hep-th/0503093.         [ Links ]

13. J.M. Romero and A. Zamora, Phys. Rev. D 70 (2004) 105006; hep-th/0408193.         [ Links ]

14. P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964).         [ Links ]

15. S.V. Ketov, H. Nishino and S. J. Gates Jr., Nucl. Phys. B 393 (1993) 149; hep-th/9207042.         [ Links ]

16. J.A. Nieto and E.A. Leon, Braz. J. Phys. 40 (2010) 383; arXiv:0905.3543 [hep-th]         [ Links ].

17. H. Ooguri and C. Vafa, Nucl. Phys. B367 (1991) 83.         [ Links ]

18. H. Ooguri and C. Vafa, Nucl. Phys. B361 (1991) 469.         [ Links ]

19. E. Sezgin, Is there a stringydescription ofselfdual supergrav-ity in (2+2)-dimensions?, Published in "Trieste High energy physics and cosmology" (1995) 360-369; hep-th/9602099.         [ Links ]

20. Z. Khviengia, H. Lu, C.N. Pope, E. Sezgin, X.J. Wang and K.W. Xu, Nucl. Phys. B 444 (1995) 468; hep-th/9504121.         [ Links ]

21. S.V. Ketov, Class. Quantum Grav. 10 (1993) 1689; hep-th/9302091.         [ Links ]

22. M.A. De Andrade, O.M. Del Cima and L.P. Colatto, Phys. Lett. B370 (1996) 59; hep-th/9506146.         [ Links ]

23. M.F. Atiyah. and R.S. Ward, Commun. Math. Phys. 55 (1977) 117.         [ Links ]

24. P.G.O. Freund, Introduction to Supersymmetry (Cambridge University Press, Melbourne, 1986).         [ Links ]

25. S.V. Ketov, H. Nishino and S.J. Gates Jr., Phys. Lett. B 307 (1993) 323; hep-th/9203081.         [ Links ]

26. J.A. Nieto, Rev. Mex. Fis. 57 (2011) 400; arXiv:1003.4750 [hep-th]         [ Links ].

27. J. A. Nieto, Int. J. Geom. Meth. Mod. Phys. 09 (2012) 1250069; arXiv:1107.0718 [gr-qc]         [ Links ].

28. J.A. Nieto, Adv. Theor. Math. Phys. 10 (2006) 747; hep-th/0506106.         [ Links ]

29. J.A. Nieto, Adv. Theor. Math. Phys. 8 (2004) 177; hep-th/0310071.         [ Links ]

30. C.M. Hull, JHEP9811 (1998) 017; hep-th/9807127.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons