Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.59 no.4 México jul./ago. 2013
Research
SL(2,R)-geometric phase space and (2+2)-dimensions
R. Floresa, J. A. Nietob,a, J. Telleza, E. A. Leonb, and E. R. Estradac
a Departamento de Investigación en Física de la Universidad de Sonora, 83000, Hermosillo Sonora, México. e-mail: rflorese@gauss.mat.uson.mx; jtellez@cajeme.cifus.uson.mx.
b Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Sinaloa, 80010, Culiacán Sinaloa, México. e-mail: niet@uas.edu.mx; janieto1@asu.edu; ealeon@uas.edu.mx.
c Instituto Tecnológico Superior de Eldorado, Eldorado, Sinaloa, México. e-mail: profe.emmanuel@gmail.com.
Received 23 November 2012
Accepted 19 April 2013
Abstract
We propose an alternative geometric mathematical structure for arbitrary phase space. The main guide in our approach is the hidden SL(2,R)-symmetry which acts on the phase space changing coordinates by momenta and vice versa. We show that the SL(2,R)-symmetry is implicit in any symplectic structure. We also prove that in any sensible physical theory based on the SL(2,R)-symmetry the signature of the flat target "spacetime" must be associated with either one-time and one-space or at least two-time and two-space coordinates. We discuss the consequences as well as possible applications of our approach on different physical scenarios.
Keywords: Symplectic geometry; constrained Hamiltonian systems; two time physics.
PACS: 04.20.Gz; 04.60.-Ds; 11.30.Ly
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This work was partially supported by PROFAPI-UAS 2009.
References
1. J.M. Maldacena and H. Ooguri, J. Math. Phys. 42 (2001) 2929; hep-th/0001053. [ Links ]
2. E. Witten, Phys. Rev. D44 (1991) 314. [ Links ]
3. O.F. Hernández, "An Understanding of SU(1,1) / U(1) conformal field theory via bosonization" , Presented at 4th Mexican School of Particles and Fields, Dec 2-12, 1990, (Oaxtepec, Mexico. Published in Mexican School 1990), 429-436. [ Links ]
4. S. Hwang, Nucl. Phys. B354 (1991) 100 . [ Links ]
5. I. Bars, Class. Quant. Grav. 18 (2001) 3113 ; hep-th/0008164. [ Links ]
6. I. Bars, C. Deliduman and O. Andreev, Phys. Rev. D 58 (1998) 066004; hep-th/9803188. [ Links ]
7. I. Bars, Int. J. Mod. Phys. A 25 (2010) 5235; arXiv:1004.0688 [hep-th] [ Links ].
8. J.A. Nieto, Nuovo Cim. B120 (2005) 135; hep-th/0410003. [ Links ]
9. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, New Jersey, 1992). [ Links ]
10. J. Govaerts, Hamiltonian Quantisation and Constrained Dynamics (Leuven University Press, Leuven, 1991). [ Links ]
11 . A. Hanson, T. Regge and C. Teitelboim, Constrained Hamilto-nian Systems (Accademia Nazionale dei Lincei, Roma, 1976). [ Links ]
12. V.M. Villanueva, J.A. Nieto, L. Ruiz and J. Silvas, J. Phys. A 38 (2005) 7183; hep-th/0503093. [ Links ]
13. J.M. Romero and A. Zamora, Phys. Rev. D 70 (2004) 105006; hep-th/0408193. [ Links ]
14. P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964). [ Links ]
15. S.V. Ketov, H. Nishino and S. J. Gates Jr., Nucl. Phys. B 393 (1993) 149; hep-th/9207042. [ Links ]
16. J.A. Nieto and E.A. Leon, Braz. J. Phys. 40 (2010) 383; arXiv:0905.3543 [hep-th] [ Links ].
17. H. Ooguri and C. Vafa, Nucl. Phys. B367 (1991) 83. [ Links ]
18. H. Ooguri and C. Vafa, Nucl. Phys. B361 (1991) 469. [ Links ]
19. E. Sezgin, Is there a stringydescription ofselfdual supergrav-ity in (2+2)-dimensions?, Published in "Trieste High energy physics and cosmology" (1995) 360-369; hep-th/9602099. [ Links ]
20. Z. Khviengia, H. Lu, C.N. Pope, E. Sezgin, X.J. Wang and K.W. Xu, Nucl. Phys. B 444 (1995) 468; hep-th/9504121. [ Links ]
21. S.V. Ketov, Class. Quantum Grav. 10 (1993) 1689; hep-th/9302091. [ Links ]
22. M.A. De Andrade, O.M. Del Cima and L.P. Colatto, Phys. Lett. B370 (1996) 59; hep-th/9506146. [ Links ]
23. M.F. Atiyah. and R.S. Ward, Commun. Math. Phys. 55 (1977) 117. [ Links ]
24. P.G.O. Freund, Introduction to Supersymmetry (Cambridge University Press, Melbourne, 1986). [ Links ]
25. S.V. Ketov, H. Nishino and S.J. Gates Jr., Phys. Lett. B 307 (1993) 323; hep-th/9203081. [ Links ]
26. J.A. Nieto, Rev. Mex. Fis. 57 (2011) 400; arXiv:1003.4750 [hep-th] [ Links ].
27. J. A. Nieto, Int. J. Geom. Meth. Mod. Phys. 09 (2012) 1250069; arXiv:1107.0718 [gr-qc] [ Links ].
28. J.A. Nieto, Adv. Theor. Math. Phys. 10 (2006) 747; hep-th/0506106. [ Links ]
29. J.A. Nieto, Adv. Theor. Math. Phys. 8 (2004) 177; hep-th/0310071. [ Links ]
30. C.M. Hull, JHEP9811 (1998) 017; hep-th/9807127. [ Links ]