SciELO - Scientific Electronic Library Online

 
vol.67 número4A variety of exact solutions for fractional (2+1)-dimensional Heisenberg ferromagnetic spin chain in the semiclassical limitThe graviton Compton mass as dark energy índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.67 no.4 México jul./ago. 2021  Epub 14-Mar-2022

https://doi.org/10.31349/revmexfis.67.040702 

Research

Gravitation, Mathematical Physics and Field Theory

New shape of the chirped bright, dark optical solitons and complex solutions for (2+1)-dimensional Ginzburg-Landau equation and modulation instability analysis

A. Houwea  * 

M. Incb  c  d 

D. Baleanue  f 

H. Rezazadehg 

S. Y. Dokah 

a Department of Physics, Faculty of Science, the University of Maroua, P.O Box 814, Maroua, Cameroon.

bBiruni University, Department of Computer Engineering, Istanbul, Turkey

cFirat University, Science Faculty, Department of Mathematics, 23119 Elazig/Turkey.

dDepartment of Medical Research, China Medical University, Hospital, China Medical University, Taichung, Taiwan. †e-mail: minc@firat.edu.tr,

eDepartment of Mathematics, Cankaya University, Balgat 06530, Ankara, Turkey.

fInstitute of Space Sciences, Magurele-Bucharest R76900, Romania.

gFaculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran.

hDepartment of Physics, Faculty of Science, the University of Ngaoundere, P.O Box 454, Cameroon.


Abstract

The investigation of the Ginzburg-Landau equation (GLE) has been done to find out and investigate new chirped bright, dark periodic and singular function solutions. For this purpose, we have used the traveling wave hypothesis and the chirp component. From there it was pointed out the constraint relation to the different arbitrary parameters of the GLE. Thereafter, we have employed the improved sub-ODE method to handle the nonlinear ordinary differential equation (NODE). In the paper, the virtue of the used analytical method has been highlighted via new chirped solitary waves. Besides, to emphasize the confrontation between the nonlinearity and dispersion terms, we have investigated the steady state of the newly obtained results. It has been obtained the Modulation instability (MI) gain spectra under the effect of the power incident and the transverse wave number. In our knowledge, these results are new compared to Refs. [28-34], and are going to be helpful to explain physical phenomena.

Keywords: Chirped bright and dark; Complex solutions; (2+1)-Ginzburg-Landau equation; modulation instability

PACS: 42.81.Dp; 42.65.Tg

1. Introduction

The search for exact solutions of nonlinear systems has reached an unprecedented speed these days. The best known solitons solutions have found their applications in various fields just to name a few such as optical fibers, plasm, biology, quantum physics . Thus, solitons did not remain anonymous for a long time because of their direct implications in trans-continental and trans-oceanic data transport [1-24]. Without doubt, soliton is the one important wave which marveled in the field of data transport and securing it. It should also be noted that the most moving side of solitary waves comes from the fact that they are associated with chirped pulses. These chirped pulses, have been widely investigated in diverse shape in recent years by [27-29].

From this, many results in theoretical and experimentally have been followed with the mathematical tools to handle them [10, 35, 36]. These analytical methods facilitated the success of these results are among others, the Sine-Gordon expansion method, the modified exp(−ψ(ξ))expansion function method,(G’/G)-expansion scheme, the trial expansion method, the new mapping method, the auxiliary equation method, the rational function method, and the Riccati-Bernoulli sub-ODE method [25-30,35-45]. In this present work, an investigation will be carried out in order to formulate new shape of the chirped soliton solutions to the famous (2+1)-dimensional complex GinzburgLandau equation (GLE), of which skeletal structure is as follows [29-33]:

iψt+12ψxx+12(α-iG)ψyy+(1-iλ)|ψ|2ψ+iγψ=0, (1)

ψ(x,t) represents complex wave profile on (2+1)dimensional space time R 2+1, while t represents the temporal variable and x,y represent spatial variable. α, λ, γ and G are real. The set of the CGLE Eq. (1) was recently used to depict the beginning of stationary periodic solutions in nonlinear stability problems. It takes the name of real Ginzburg-Landau equation when (α = λ = 0) [30]. To get right to the purpose, the work is organized as follows: Section 2 is devoted to the traveling-wave solution. Section 3 is used the linear stability technic to study the modulation instability gain spectrum. Section 4 will depicts the obtained analytical results with their physical explanation. The last part of the work will present the conclusions of this work.

1.1. Analytical investigation and traveling waves solution

The following envelope transformation is used to build soliton solution

ψ(x,y,t)=ϕ(ζ)exp[iξ+Aζ], (2)

where ϕ(ζ) is real function and the chirp component is A(ζ)), with ξ and ζ given by ξ = kx + ly + vt + ξ 0 and ζ = nx + my + ωt + η 0, respectively. Inserting Eq. (2) into Eq. (1) splits imaginary and real parts as

n2+αm2ϕA+2n2+αm2ϕ'A'+Gm2A'2ϕ-Gm2ϕ''

+2(nk+ω+αl)ϕ'+2GmlϕA'+(Gl2+2γ)ϕ-2λϕ3=0, (3)

and

(n2+αm2)ϕ''-(n2+αm2)A'2ϕ+2Gm2A'ϕ'+Gm2ϕA''

-2(nk+ωαml)A'ϕ+2Gmlϕ'-(k2+αl2+2v)ϕ+2ϕ3=0, (4)

Suppose that the chirp is given by

A(ζ)=A0ln(|ϕ(ζ)|), (5)

where A 0 is an arbitrary constant to obtain later. Plugging Eq. (5) into Eq. (4) and Eq. (3), we get

l1ϕϕ''+l2ϕ'2+l3ϕϕ'+l4ϕ2-2λϕ4=0, (6)

and

Λ1ϕϕ''-Λ2ϕ'2-Λ3ϕϕ'-Λ4ϕ2+2ϕ4=0, (7)

where

l1=A0n2+A0αm2-Gm2,l2=A0n2+αm2+A0Gm2,l3=2nk+ω+αml+GmlA0,l4=Gl2+2γ.

Λ1=n2+αm2,Λ2=A0(A0n2+A0αm2-Gm2),Λ3=2(A0nk+A0ω+A0αml-Gml),Λ4=k2+αl2+2v.

To deal with an analytical solutions to Eq. (7) and Eq. (6), we suppose that Λ3 =l3= 0. Consequently it is recovered

A0=Gmlnk+ω+αml. (8)

Then Eq. (7) and Eq. (6) become

l1ϕϕ''+l2ϕ'2+l4ϕ2-2λϕ4=0, (9)

Λ1ϕϕ''-Λ2ϕ'2-Λ4ϕ2+2ϕ4=0, (10)

It has become easy to investigate soliton-like solutions now. For this purpose, we considered the following expression as solution [45]

ϕ=μFn(ζ),μ>0, (11)

and n an arbitrary constant, while F(ξ) is taken like solutions of the following ordinary differential equation [45]

F'2(ζ)=AF2-2p(ζ)+BF2-p(ζ)+CF2(ζ)+DF2+p(ζ)+EF2+2p(ζ).p>0. (12)

With the homogeneous balance principle between ϕϕ’’ and ϕ 4, it is obtained n+n+2p = 4np = n. From which Eq. (11) turns to

ϕ=μFp(ζ). (13)

Using the set of equations given by Eq. (13) together with Eq. (12) and make use of into Eq. (10) or Eq. (9) gives the set of system of equation in terms of F jp (ζ)(j = 2,3,4,5,6,8)

-2λμ4F8pζ+6l1μ2p2E+4l2μ2p2EF6pζ+4l2μ2p2D+5l1μ2p2DF5pζ

+4l2μ2p2C+4l1μ2p2C+l4μ2F4pζ+4l2μ2p2B+3l1μ2p2BF3pζ

+(2l1μ2p2A+4l2μ2p2A)F2p(ζ)=0. (14)

Thereafter solving the obtained set of system of Eq. (14) by using the mathematical software Maple 18, it is revealed.

A=0,B=0,C=-14l4p2(l2+l1),D=D,E=E. (15)

We can thus unroll the types of solutions of Eq. (1), as well as the corresponding chirped solutions

Case 1: If A = 0, B = 0,D = 0, it is recovered bright soliton of Eq. (1):

ψ1,1(x,y,t)=e(iξ)μ[ε-CEsechpCζ]1p[με-CEsechpCζ1p](iA0),

C>0,E<0,ε±1, (16)

and the bright chirp is

A1,1(x,y,t)=A0ln|μ[ε-CEsechpCζ]1p|,C>0,E<0,ε±1, (17)

a periodic function solutions

ψ1,2x,y,t=eiξμε-CEsecp-Cζ1pμε-CEsecp-Cζ1piA0,

C<0,E>0,ε±1, (18)

and the periodic chirp

A1,2(x,y,t)=A0ln|[ε-CEsecp-Cζ]1p|,C<0,E>0,ε±1, (19)

then a rational solution

ψ1,3(x,y,t)=e(iξ)μ[εpEζ]1p[μεpEζ1p](iA0),C=0,E>0,ε±1. (20)

and the rational chirp

A1,3(x,y,t)=A0ln|μ[εpEζ]1p|,C=0,E>0,ε±1. (21)

Case 2: By setting the variables A = 0, B = 0, we deduce three forms of solutions of Eq. (5):

ψ2,1x,y,t=eiξμ1coshpCζ-D2C1pμ1coshpCζ-D2C1piA0,

C>0,D<2C,E=D24C-C, (22)

and the chirp

A2,1(x,y,t)=A0ln|μ[1coshpCζ-D2C]1p|,C>0,D<2C,E=D24C-C, (23)

it is gained for C > 0, E > 0, D=-2CE, ε = ±1,

ψ2,2(x,y,t)=e(iξ)μ[12CE1+εtanhp2Cζ]1p[μ12CE1+εtanhp2Cζ1p](iA0), (24)

the corresponding chirp gives

A2,2(x,y,t)=A0ln|μ[12CE1+εtanhp2Cζ]1p|,C>0,E>0,D=-2CE,ε=±1 (25)

and

ψ2,3(x,y,t)=e(iξ)μ[4D(pDζ)2-4E]1p[μ4D(pDζ)2-4E1p](iA0),C=0,E<0. (26)

with the chirp

A2,3(x,y,t)=A0|μ[4D(pDζ)2-4E]1p|,C=0,E<0. (27)

Case 3: Considering A = B = 0, C > 0, we have gained combined bright soliton and hyperbolic functions solutions of Eq. (5):

ψ3,1(x,y,t)=e(iξ)μ[2Csech2p2Cζ2D2-4CE-D2-4CE+Dsech2p2Cζ]1p

×[μ2Csech2p2Cζ2D2-4CE-D2-4CE+Dsech2p2Cζ1p](iA0)D2-4CE>0, (28)

the corresponding chirp

A3,1(x,y,t)=A0ln|[2Csech2p2Cζ2D2-4CE-D2-4CE+Dsech2p2Cζ]1p|,D2-4CE>0, (29)

ψ3,2(x,y,t)=e(iξ)μ[2Ccsch2p2Cζ2D2-4CE+D2-4CE-Dcsch2p2Cζ]1p

×[μ2Ccsch2p2Cζ2D2-4CE+D2-4CE-Dcsch2p2Cζ1p](iA0),D2-4CE>0, (30)

with the corresponding chirp

A3,2(x,y,t)=A0ln|μ[2Ccsch2p2Cζ2D2-4CE+D2-4CE-Dcsch2p2Cζ]1p|,D2-4CE>0, (31)

For D 2-4CE >0, ε=±1

ψ3,3(x,y,t)=e(iξ)μ[2CεD2-4CEcoshpCξ-D]1p[μ2CεD2-4CEcoshpCζ-D1p](iA0), (32)

the chirp gives

A3,3(x,y,t)=A0ln|μ[2CεD2-4CEcoshpCζ-D]1p|,D2-4CE>0,ε=±1 (33)

for D 2 − 4CE < 0, ε = ±1

ψ3,4(x,y,t)=e(iξ)μ[2Cε-D2-4CEsinhpCζ-D]1p

×[μ2Cε-D2-4CEsinhpCζ-D1p](iA0), (34)

the chirp is

A3,4(x,y,t)=A0ln|μ[2Cε-D2-4CEsinhpCζ-D]1p|,D2-4CE<0,ε=±1 (35)

ψ3,5x,y,t=eiξμ[-CD(1+εtanhp2Cζ]1pμ(-CD(1+εtanh(p2Cζ))1piA0

D2-4CE=0,ε=±1 (36)

the chirp is given by

A3,5(x,y,t)=A0ln|μ[-CD1+εtanhp2Cζ]1p|,D2-4CE=0,ε=±1 (37)

for D 2 − 4CE = 0, ε = ±1

ψ3,6(x,y,t)=e(iξ)[-CD(1+εcothp2Cζ]1pμ(-CD(1+εcothp2Cζ1piA0 (38)

the corresponding chirp

A3,6(x,y,t)=A0ln|μ[-CD1+εcothp2Cζ]1p|,D2-4CE=0,ε=±1 (39)

for E > 0, ε = ±1

ψ3,7(x,y,t)=e(iξ)μ[-Csech2p2CζD+2εCEtanhp2Cζ]1p[μ-Csech2p2CζD+2εCEtanhp2Cζ1p](iA0), (40)

the chirp is revealed as

A3,7(x,y,t)=A0ln|μ[-Csech2p2CζD+2εCEtanhp2Cζ]1p|,E>0,ε=±1 (41)

for E > 0, ε = ±1

ψ3,8(x,y,t)=e(iξ)μ[Ccsch2p2CζD+2εCEcothp2Cζ]1p[μCcsch2p2CζD+2εCEcothp2Cζ12](iA0), (42)

and the corresponding chirp

A3,8(x,y,t)=A0ln|μ[Ccsch2p2CζD+2εCEcothp2Cζ]1p|,E>0,ε=±1 (43)

ψ3,9(x,y,t)=e(iξ)μ[-CDsech2p2CζD2-CE1+εtanhp2Cζ2]12

×[μ-CDsech2p2CζD2-CE1+εtanhp2Cζ21P](iA0), (44)

the chirp gives

A3,9(x,y,t)=A0ln|μ[-CDsech2p2CζD2-CE1+εtanhp2Cζ2]1P|, (45)

ψ3,10x,y,t=eiξμCDcsch2p2CζD2-CE1+εcothp2Cζ21P

×[μCDcsch2p2CζD2-CE1+εcothp2Cζ21p](iA0). (46)

and the corresponding chirp as

A3,11(x,y,t)=A0ln|μ[CDcsch2p2CζD2-CE1+εcothp2Cζ2]1p|. (47)

Case 4: Considering A = B = 0, C < 0, we have gained combined bright soliton and hyperbolic functions as solutions For D 2 − 4CE > 0

ψ4,1(x,y,t)=e(iξ)[-2Csec2p2-Cζ2D2-4CE-D2-4CE-Dsec2p2-Cζ]1p

×[μ-2Csec2p2-Cζ2D2-4CE-D2-4CE-Dsec2p2-Cζ1p](iA0), (48)

the chirp gives

A4,2(x,y,t)=A0ln|μ[-2Csec2p2-Cζ2D2-4CE-D2-4CE-Dsec2p2-Cζ]1p|,D2-4CE>0, (49)

for D 2 − 4CE > 0,

ψ4,3x,y,t=eiξμ2Ccsc2p2-Cζ2D2-4CE-D2-4CE+Dcsc2p2-Cζ1p

×[μ2Ccsc2p2-Cζ2D2-4CE-D2-4CE+Dcsc2p2-Cζ1p](iA0), (50)

the chirp gives

A4,4(x,y,t)=A0ln|μ[2Ccsc2p2-Cζ2D2-4CE-D2-4CE+Dcsc2p2-Cζ]1p|,D2-4CE>0, (51)

for D 2 − 4CE > 0, ε = ±1,

ψ4,5(x,y,t)=e(iξ)μ[2Csecp-CζεD2-4CE-Dsecp-Cζ]1p

×[μ2Csecp-CζεD2-4CE-Dsecp-Cζ1p](iA0), (52)

the chirp reads as follows

A4,5(x,y,t)=A0ln|μ[2Csecp-CζεD2-4CE-Dsecp-Cζ]1p|,D2-4CE>0,ε=±1, (53)

for D 2 − 4CE > 0, ε = ±1,

ψ4,6(x,y,t)=e(iξ)μ[2Ccscp-CζεD2-4CE-Dcscp-Cζ]1p[μ2Ccscp-CζεD2-4CE-Dcscp-Cζ1p](iA0),

the chirp is given by

A4,6(x,y,t)=A0ln|μ[2Ccscp-CζεD2-4CE-Dcscp-Cζ]1p|,D2-4CE>0,ε=±1, (54)

for E > 0, ε = ±1,

ψ4,7(x,y,t)=e(iξ)μ[-Csec2p2-CζD+2ε-CEtanp2-Cζ]1p[μ-Csec2p2-CζD+2ε-CEtanp2-Cζ1p](iA0), (55)

the chirp is obtained

A4,7(x,y,t)=A0ln|μ[-Csec2p2-CζD+2ε-CEtanp2-Cζ]1p|,E>0,ε=±1, (56)

for D 2 − 4CE > 0, E > 0, ε = ±1,

ψ4,8(x,y,t)=e(iξ)μ[-Ccsc2p2-CζD+2ε-CEcotp2-Cζ]1p[μ-Ccsc2p2-CζD+2ε-CEcotp2-Cζ1p](iA0), (57)

the chirp is

A4,8(x,y,t)=A0ln|μ[-Ccsc2p2-CζD+2ε-CEcotp2-Cζ]1p|,D2-4CE>0,E>0,ε=±1. (58)

Case 5: For A = B = 0, C > 0,ε = ±1,

ψ5,1(x,y,t)=e(iξ)μ[4Cp2epεCζeεpCζ-Dp22-4CEp4]1p[μ4Cp2epεCζeεpCζ-Dp22-4CEp41p](iA0), (59)

the chirp component is

A5,1(x,y,t)=A0ln|μ[4Cp2epεCξeεpCζ-Dp22-4CEp4]1p|,C>0,ε=±1, (60)

ψ5,2x,y,t=eiξμ4Cp2epεCζ-1+4CEp4e2εpCζ1pμ4Cp2epεCζ-1+4CEp4e2εpCζ1piA0,

C>0,D=0,ε=±1, (61)

the chirp gives

A5,2(x,y,t)=A0ln|μ[4Cp2epεCζ-1+4CEp4e2εpCζ]1p|,C>0,D=0,ε=±1, (62)

ψ5,3(x,y,t)=e(iξ)μ[εpEζ]1p[μεpEζ1p](iA0),E>0,C=D=0,ε=±1. (63)

The last chirp gives

A5,3(x,y,t)=A0ln|μ[εpEζ]1p|,E>0,C=D=0,ε=±1. (64)

1.2. Modulation analysis

This section will be using linear analysis technique to take out the modulation instability (MI) gain spectrum. Assuming the steady state solution of Eq. (1) in the form of:

ψx,y,t=[P0+Bx,y,t]eiϕNL,ϕNL=δP0x (65)

where P 0 is the incident power. B(x,y,t) is the small perturbation component and B (x,y,t) is the complex conjugate. Inserting Eq. (66) into Eq. (1) lead to

ψ(x,y,t)=iBt+12Bxx+12(1-αG)Byy+(1-iλ)(P0(2B+B*)+iγB=0. (66)

Suppose the solution of Eq. (67) is in the following expression

B(x,y,t)=a1ei[Kx+Γy-Ωt]+a2e-i[Kx+Γy-Ωt]. (67)

where a j (j = 1,2) are reals, and K and Ω are wave numbers and the modulation frequency, respectively. The quantity Γ is the transverse wave number of the perturbation. Inserting Eq. (68) into Eq. (67) gives the set of linear of coupled equations for α1 and α2

(Ω-2iλP0-12K2+2P0-12αΓ2+λγ+12iGΓ2+iγ)a1+(P0-iλP0)a2=0,

(P0-iλP0)a1+(-12K2+2P0-Ω-2iλP0+12iGΓ2+iγ-12αΓ2+λγ)a2=0. (68)

This set of coupled of equation has a nontrivial solution when the determinant of the matrix below vanishes

Ω-2iλP0-12K2+2P0-12αΓ2+λγ+12iGΓ2+iγP0-iλP0P0-iλP0-12K2+2P0-Ω-2iλP0+12iGΓ2+iγ-12αΓ2+λγ (69)

Thereafter, the MI gain spectrum is revealed as

2Im(K)=(-4iK2γ-4GΓ2γ-24iλP02-8P0αΓ2+16iP0γ+8iλγ2-4K2λγ+4λ2γ2-G2Γ4-12λ2P02

-8K2P0+12P02+α2Γ4+8iλP0αΓ2+4iλγGΓ2+2K2αΓ2+32P0λγ+8λP0GΓ2+8iλP0K2

-2K2iGΓ2+8P0iGΓ2-2iαΓ4G-16iλ2P0γ-4iαΓ2γ-4αΓ2λγ-4γ2+K4)12, (70)

Now to investigate the behavior of Eq. (71), we first point out the condition of the obtaining the steady state. So, it is important to highlight the fact that the perturbation grow exponentially, when the wave number value contains the imaginary part, in this condition the steady state solution is unstable. However, in case of small perturbation and having the wave number with real value, the steady state of the solution is stable.

Here two cases are going to be discussed:

• Case 1: In this case, the steady state is stable again and a small perturbution is seen if K is real

(-4iK2γ-4GΓ2γ-24iλP02-8P0αΓ2+16iP0γ+8iλγ2-4K2λγ+4λ2γ2-G2Γ4-12λ2P02-8K2P0

+12P02+α2Γ4+8iλP0αΓ2+4iλγGΓ2+2K2αΓ2+32P0λγ+8λP0GΓ2+8iλP0K2-2K2iGΓ2+8P0iGΓ2

-2iαΓ4G-16iλ2P0γ-4iαΓ2γ-4αΓ2λγ-4γ2+K4)12>0, (71)

but if λ, γ and G are non zero value, the inequality Eq. (72) is invalid. Consequently the steady is still unstable.

• Case 2: In this case, the MI occurs when K is imaginary due to the fact that the perturbation increases exponentially and in the same time

(-4iK2γ-4GΓ2γ-24iλP02-8P0αΓ2+16iP0γ+8iλγ2-4K2λγ+4λ2γ2-G2Γ4-12λ2P02-8K2P0

+12P02+α2Γ4+8iλP0αΓ2+4iλγGΓ2+2K2αΓ2+32P0λγ+8λP0GΓ2+8iλP0K2-2K2iGΓ2+8P0iGΓ2

-2iαΓ4G-16iλ2P0γ-4iαΓ2γ-4αΓ2λγ-4γ2+K4)12<0, (72)

in the same way if (λ, γ , G ≠ 0) it remains invalid. To analyze the MI gain spectrum, we suppose that λ = γ = G = 0. Consequently the increase rate of MI gain spectrum G(K) = 2Im(K) is given by

GK=-8αP0Γ2-8K2P0+12P02+α2Γ4+2αK2Γ2+K4, (73)

1.3. Physical explanation and Modulation instability analysis

Figure 1 is the illustration of the MI gain spectrum versus wave number with the effect of incident power. It is observed that when the incident power increase the unstable band also increase. So, at the maximum incident power, it remains stable (see Fig. 1d). Meanwhile, Fig. 2 is illustration of the MI gain spectrum with small value of the incident power. The unstable plage increase when the incident power value is to small (see black line). Futhermore, Fig. 3 is the illustration of the MI gain spectra versus wave number under the effect of the transverse wave number. For Γ = 70.50, one side lobe is obtained and 38 ≤ K ≤ 100. Figures 4a) and b) have depicted the chirped bright 3D and 2D for values of n=0.5, m=0.14, α = 0.02, G = 2.7, l = −0.3, γ = 0.12, y = 0.5, E = −0.5, C = 0.1106, ω = 0.15. Moreover, Figs. 5a), b), c) and d) are chirp kink-like soliton obtained for the values of A 0 = −7.5,n = 0.5,m = 0.14 = 0.2,G = 1.7,l = −1.3 = 0.12,x = 0,E = 1.5,C = 0.3820.

FIGURE 1 (Color online) Variation of MI gain spectrum versus wave number with the effect of the incident power a) [P 0 = 150, P 0 = 250, P 0 = 350], b) [P 0 = 450, P 0 = 550, P 0 = 650], c) [P 0 = 1000, P 0 = 1100, P 0 = 1200], d) [P 0 = 1300, P 0 = 1400, P 0 = 1500] at α = 0.1,Γ = 0.5. 

FIGURE 2 Plot of the MI gain spectrum versus wave number with the effect of the incident power (black line [P 0 = 10], blue line [P = 50] and red line [P = 20]) at α = 0.75,Γ = 0.75. 

FIGURE 3 (Color online) variation of the MI gain spectra versus wave number with the effect of the transverse wave number a) [Γ = 70.50, Γ = 90.50, Γ = 110.50] and b) [Γ = −10.50, Γ = −30.50, Γ = −50.50] at α = 0.05, P 0 = 2500 respectively. 

FIGURE 4 Spatiotemporal plot evolution a) 3-D (left panel) and b) 2-D (right panel) of the chirp bright of |Rψ1,1(x,y,t)|2 of Eq. (16) at n = 0.5,m = 0.14 = 0.02,G = 2.7,l = −0.3 = 0.12,y = 0.5,E = −0.5,C = 0.1106 = 0.15. 

FIGURE 5 Spatiotemporal plot evolution 3-D of the chirp kink-like soliton solutions of |Rψ2,2(x,y,t)|2 of Eq. (24) at a) ω = 2.05, b) ω = 2.005, c) ω = 2.0005, d) ω = 2.00005, for A 0 = −7.5, n = 0.5, m = 0.14, α = 0.2, G = 1.7, l = −1.3, γ = 0.12, x = 0, E = 1.5, C = 0.3820. 

2. Conclusion

This work addresses new shape of the chirped bright and dark soliton solutions through the CGLE by using the new sub-ODE equations. By using a special ansatz of the traveling wave transformation, we obtain a new shape of the chirp comparatively to the previous works reported in literature [26,31-34,36,45]. In addition, new singular soliton solutions, trigonometric function solutions and complex traveling waves have been obtained. The obtained results are new in the field of solitons. The authors hope that these results will be very useful to explain physical phenomenons in diverse field of science and engineering. In addition, the different parameters of the CGLE have play an important role during graphical representation of the analytical results. Finally, the linear analysis technique has been applied to the investigation the steady state of the MI gain spectrum and also to point out the different regime of instability.

References

1. M. A. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991), https://doi.org/10.1017/CBO9780511623998. [ Links ]

2. S. Nestor et al., New solitary waves for the Klein-GordonZakharov equations, Mod. Phys. Lett. B 34 (2020) 2050246, https://doi.org/10.1142/S0217984920502462 [ Links ]

3. Z. Korpinar, M. Inc, M. Bayram, and M. S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, Optik 206 (2020) 163332, https://doi.org/10.1016/j.ijleo.2019.163332. [ Links ]

4. R. Fedele, H. Schamel, V. I. Karpman, and P. K. Shukla, Envelope solitons of nonlinear Schrödinger equation with an anti-cubic nonlinearity, J. Phys. A 36 (2003) 1169, https://doi.org/10.1088/0305-4470/36/4/322. [ Links ]

5. A. Ali, A. R. Seadawy, and D. Lu, Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis, Optik 145 (2017) 79, https://doi.org/10.1016/j.ijleo.2017.07.016. [ Links ]

6. E. M. E. Zayed and K. A. E. Alurrfi, New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations, Optik 127 (2016) 9131, https://doi.org/10.1016/j.ijleo.2016.05.100 [ Links ]

7. E. C. Aslan and M. Inc, Optical soliton solutions of the NLSE with quadratic- cubic-Hamiltonian perturbations and modulation instability analysis, Optik 196 (2019) 162661, https://doi.org/10.1016/j.ijleo.2019.04.008. [ Links ]

8. M. Al Ghabshi, E. V. Krishnan, M. Alquran, and K. Al-Khaled, Jacobi elliptic function solutions of a nonlinear Schrödinger equation in metamaterials, Nonlinear Stud. 24 (2017) 469. [ Links ]

9. Z. Korpinar and M. Inc, Numerical simulations for fractional variation of (1 + 1)-dimensional Biswas-Milovic equation, Optik 166 (2018) 77, https://doi.org/10.1016/j.ijleo.2018.02.099. [ Links ]

10. X.-F. Yang, Z.-C. Deng, and Y. Wei, A Riccati-Bernoulli subODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ. 2015 (2015) 117, https://doi.org/10.1186/s13662-015-0452-4. [ Links ]

11. A. Biswas, Temporal 1-Soliton Solution of the Complex Ginzburg-Landau Equation with Power Law Nonlinearity, Prog. Electromag. Res. 96 (2009) 1, https://doi.org/10.2528/PIER09073108. [ Links ]

12. M. Mirzazadeh et al., Optical solitons with complex GinzburgLandau equation, Nonlinear Dyn. 85 (2016) 1979, https://doi.org/10.1007/s11071-016-2810-5. [ Links ]

13. A. H. Arnous, A. R. Seadawy, R. T. Alqahtani, and A. Biswas, Optical solitons with complex Ginzburg-Landau equation by modified simple equation method, Optik 144 (2017) 475, https://doi.org/10.1016/j.ijleo.2017.07.013. [ Links ]

14. A. Biswas and R. T. Alqahtani, Optical soliton perturbation with complex Ginzburg-Landau equation by semi-inverse variational principle, Optik 147 (2017) 77, https://doi.org/10.1016/j.ijleo.2017.08.018. [ Links ]

15. H. Triki et al., Bright and dark solitons of the modified complex Ginzburg- Landau equation with parabolic and dual-power law nonlinearity, Rom. Rep. Phys. 64 (2012) 367. [ Links ]

16. A. Biswas et al., Optical soliton perturbation for complex Ginzburg-Landau equation with modified simple equation method, Optik 158 (2018) 399, https://doi.org/10.1016/j.ijleo.2017.12.131. [ Links ]

17. A. Biswas et al., Optical soliton perturbation with complex Ginzburg-Landau equation using trial solution approach, Optik 160 (2018) 44, https://doi.org/10.1016/j.ijleo.2018.01.102. [ Links ]

18. A. Biswas, Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms, Optik 174 (2018) 207, https://doi.org/10.1016/j.ijleo.2018.08.063. [ Links ]

19. S. Arshed, A. Biswas, F. Mallawi, and M. R. Belic, Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms, Phys. Lett. A 383 (2019) 126026, https://doi.org/10.1016/j.physleta.2019.126026. [ Links ]

20. A. Das et al., Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion, Chin. J. Phys. 61 (2019) 255, https://doi.org/10.1016/j.cjph.2019.08.009. [ Links ]

21. Y. Yildirim, A. Biswas, S. Khan, A. S. Alshomrani, and M. R. Belic, Optical solitons with differential group delay for complex Ginzburg-Landau equation having Kerr and parabolic laws of refractive index, Optik 202 (2020) 163737, https://doi.org/10.1016/j.ijleo.2019.163737. [ Links ]

22. E. M. E. Zayed et al., Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms, Optik 207 (2020) 163804, https://doi.org/10.1016/j.ijleo.2019.163804. [ Links ]

23. Y. Yildirim et al., Optical solitons with differential group delay for complex Ginzburg-Landau equation, Res. Phys. 16 (2020) 102888, https://doi.org/10.1016/j.rinp.2019.102888. [ Links ]

24. Y. Yan, W. Liu, Q. Zhou, and A. Biswas, Dromionlike structures and periodic wave solutions for variable coefficients complex cubic-quintic Ginzburg- Landau equation influenced by higher-order effects and nonlinear gain, Nonlinear Dyn. 99 (2020) 1313, https://doi.org/10.1007/s11071-019-05356-0. [ Links ]

25. A. Houwe et al., Complex traveling-wave and solitons solutions to the Klein- Gordon-Zakharov equations, Res. Phys. 17 (2020) 103127, https://doi.org/10.1016/j.rinp.2020.103127. [ Links ]

26. A. Houwe, M. Inc, S. Y. Doka, M. A. Akinlar, and D. Baleanu, Chirped solitons in negative index materials generated by Kerr nonlinearity, Res. Phys. 17 (2020) 103097, https://doi.org/10.1016/j.rinp.2020.103097. [ Links ]

27. Z. Zhao, Z. Dai, and D. Li, Breather type of chirped soliton solutions for the 2D Ginzburg-Landau equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1712, https://doi.org/10.1016/j.cnsns.2010.08.026. [ Links ]

28. I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys. 74 (2002) 99, https://doi.org/10.1103/RevModPhys.74.99 [ Links ]

29. Y. Shi, Z. Dai, and D. Li, Application of Exp-function method for 2D cubic- quintic Ginzburg-Landau equation, Appl. Math. Comput. 210 (2009) 269, https://doi.org/10.1016/j.amc.2009.01.005. [ Links ]

30. P. Zhong, R. Yang, and G. Yang, Exact periodic and blow up solutions for 2D Ginzburg-Landau equation, Phys. Lett. A 373 (2008) 19, https://doi.org/10.1016/j.physleta.2008.10.078. [ Links ]

31. M. A. Abdou et al., Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation, Optik 171 (2018) 463, https://doi.org/10.1016/j.ijleo.2018.06.076. [ Links ]

32. G. Akram and N. Mahak, Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation, Optik 164 (2018) 210, https://doi.org/10.1016/j.ijleo.2018.02.108. [ Links ]

33. M. S. Osman, On complex wave solutions governed by the 2D Ginzburg- Landau equation with variable coefficients, Optik 156 (2018) 169, https://doi.org/10.1016/j.ijleo.2017.10.127. [ Links ]

34. C. Yue, D. Lu, M. Arshad, N. Nasreen, and X. Qian, BrightDark and Multi Solitons Solutions of (3+1)-Dimensional Cubic-Quintic Complex Ginzburg-Landau Dynamical Equation with Applications and Stability, Entropy 22 (2020) 202, https://doi.org/10.3390/e22020202. [ Links ]

35. M. Inc and D. Baleanu, Optical solitons for the KunduEckhaus equation with time dependent coefficient, Optik 159 (2018) 324, https://doi.org/10.1016/j.ijleo.2018.01.084. [ Links ]

36. S. Nestor et al., Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers, Commun. Theor. Phys. 72 (2020) 065501, https://doi.org/10.1088/1572-9494/ab7ecd. [ Links ]

37. S. Nestor, A. Houwe, G. Betchewe, M. Inc, and S. Y. Doka, A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrödinger equation, Phys. Scr. 95 (2020) 085108, https://doi.org/10.1088/1402-4896/ab9dad. [ Links ]

38. A. I. Aliyu, M. Inc, A. Yusuf, and D. Baleanu, Optical solitons and stability analysis with spatio-temporal dispersion in Kerr and quadric-cubic nonlinear media, Optik 178 (2019) 923, https://doi.org/10.1016/j.ijleo.2018.10.046. [ Links ]

39. A. Korkmaz, O. E. Hepson, K. Hosseini, H. Rezazadeh, and M. Eslami, Sine- Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci. 32 (2020) 567, https://doi.org/10.1016/j.jksus.2018.08.013. [ Links ]

40. D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics, Optik 149 (2017) 439, https://doi.org/10.1016/j.ijleo.2017.09.066. [ Links ]

41. C. Yan, A simple transformation fo nonlinear waves, Phys. Lett. A 224 (1996) 77, https://doi.org/10.1016/S0375-9601(96)00770-0. [ Links ]

42. M. Inc, A. I. Aliyu, A. Yusuf, and D. Baleanu, Optical solitons to the resonance nonlinear Schroödinger equation by Sine-Gordon equation method, Superlattices Microstruct. 113 (2018) 541, [ Links ]

43. K. Khan and M. Ali Akbar, Application of Exp(−φ(ξ))expansion Method to Find the Exact Solutions of Modified Benjamin-Bona-Mahony Equation, World Appl. Sci. J. 24 (2013) 1373. [ Links ]

44. A. Houwe et al., Solitons solutions of nonlinear Schrödinger equation in the left-handed metamaterials by three different techniques, J. Phys. Commun. 3 (2019) 011002, https://doi.org/10.1088/2399-6528/aaff2c. [ Links ]

45. A. Houwe et al., Chirped solitons in discrete electrical transmission line, Res. Phys. 18 (2020) 103188, https://doi.org/10.1016/j.rinp.2020.103188. [ Links ]

Received: December 01, 2020; Accepted: January 21, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License