Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Boletín de la Sociedad Geológica Mexicana
versión impresa ISSN 1405-3322
Bol. Soc. Geol. Mex vol.59 no.1 Ciudad de México jun. 2007
https://doi.org/10.18268/bsgm2007v59n1a10
Artículos
Obtención y caracterización de ferritas ternarias de manganeso por mecanosíntesis
Mechanosynthesis and characterization of ternary Mn ferrites
1Centro de Investigaciones Químicas. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42090, Ciudad Universitaria, Pachuca, Hidalgo, México. prietog@uaeh.edu.mx
2Centro de Investigaciones en Materiales y Metalurgia. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42090, Ciudad Universitaria, Pachuca, Hidalgo, México
3Centro de Estudios Académicos sobre Contaminación Ambiental. Universidad Autónoma de Querétaro, Cerro Las Campanas s/n. Santiago de Querétaro, México
Partículas cristalinas de MnFe2O4 fueron sintetizadas por molienda y mezclado en un molino de bola, obteniéndose a partir de mezcla estequiométrica de manganosita (MnO) y hematite (α-Fe2O3). El proceso de mecanosíntesis fue realizado a temperatura ambiente en recipientes de acero endurecido y con frascos del carburo de tungsteno. El análisis cuantitativo de las fases se realizó por difracción de rayos X del polvo. El método de Rietveld fue utilizado para estudiar las transformaciones químicas producidas por la acción de la molienda de los polvos.
La fase de espinela del compuesto cristalino MnFe2O4 comienza a aparecer después de 10 h de molienda y alcanza su contenido máximo (fracción molar aproximadamente 0.8) después de 35 h de molienda. Una prolongada molienda indujo a una contaminación severa en la mezcla del polvo con hierro metálico cuando se utilizó el recipiente de acero inoxidable endurecido. La contaminación con Fe se origina en el interior del recipiente por el deterioro de las bolas. La fricción de las bolas puede inducir una reacción redox entre Fe(III) y el hierro metálico, transformando la fase de la espinela sintética MnFe2O4 en una fase del tipo wustita (Fe, Mn)O. La permeabilidad magnética a los diferentes tiempos de molienda lo demuestra.
Palabras clave: Ferrita del manganeso; Mecanosíntesis; Ferrita cristalina; Permeabilidad magnética; Método de Rietveld
Crystalline MnFe2O4 particles were synthesized by a high-energy ball milling technique, starting from a manganosite (MnO) and hematite (α-Fe2O3) stoichiometric powder mixture. The mechanosynthesis process was performed at room temperature both in hardened steel and in tungsten carbide vials. X-ray powder diffraction quantitative phase analysis by the Rietveld method was used to study the chemical transformations promoted by the milling action. The crystalline MnFe2O4 spinel phase begins to appear after 10 h of milling and reaches its maximum content (≈0.8 molar fraction) after 35 h of milling. A prolonged milling time induces a dramatic contamination of the powder mixture, when hardened stainless steel was adopted, due to metallic iron originating from vial and balls debris. Ball milling is able to induce a redox reaction between FeIII and metallic iron, transforming the MnFe2O4 spinel phase into a wüstite type (Fe, Mn)O phase. Magnetic permeability in different time of miller demonstrates.
Keywords: Manganese ferrite; Mechanosynthesis; Nanostructured ferrite; Magnetic permeability; Rietveld method
Referencias bibliográficas
Albani, C. G., Ennas, A. La Barbera, G. Marongiu, F. Padella, F. Varsano, 2005, Synthesis of nanocrystalline MnFe2O4: advances in thermochemical water splitting: International Journal Hydrogen Energy, 30 (13), p.1407-1411. [ Links ]
Beckman Coulter, 2001, Manual de Procedimiento del Equipo, Analizador de Tamaño de Partículas por Rayos Laser LS13-320, USA p. 1-11. [ Links ]
Bergey, E. J. L., Levy, X. Wang, L.J. Krebs, M. Lal, K. Kim, S. Pakatchi, C. Liebow, P.N. Prasad , 2002, DC Magnetic Field Induced Magnetocytolysis of Cancer Cells Targeted by LH-RH Magnetic Nanoparticles in vitro: Biomedical Microdevices 4, 293-299. [ Links ]
Bid, S., S.K. Pradhan, 2003, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis: Materials Chemistry and Physics, 82(1), 27-37. [ Links ]
Bid, S. , S.K. Pradhan, 2004, Characterization of crystalline structure of ball-milled nano-Ni-Zn-ferrite by Rietveld method: Materials Chemistry and Physics, 84(2), 291-301. [ Links ]
Bonsdorf, G., K. Schâfer, K. Teske, H. Langbein, H. Ullmann, 1998, Stability region and oxygen stoichiometry of manganese ferrite: Solid State Ionics, 110, 73-82. [ Links ]
Bremer, M., S. Fischer, H. Langbein, W. Topelmann, H. Scheler, 1992, Investigation on the formation of manganese-zinc ferrites by thermal decomposition of solid solution oxalates: Thermochimica Acta, 209, 323-330. [ Links ]
Carpenter, E., C.J. O’Connor, V.G. Harris, 1999, Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis: Journal of Applied Physics, 85, 5175-5178. [ Links ]
Gajbhiye, N., G. Balaji, 2002, Synthesis, reactivity, and cations inversion studies of nanocrystalline MnFe2O4 particles: Thermochimica Acta, 385 (1), 143-151. [ Links ]
Guillot, B., M. Laarj, S. Kacim, 1997, Reactivity towards oxygen and cation distribution of manganese iron spinel Mn3-xFexO4 (0≤x≤3) fine powders studied by thermogravimetry and IR spectroscopy: Journal of Materials Chemistry, 7, 827-832. [ Links ]
Kaneko, H., Y. Ochiai, K. Shimizu, Y. Yosokawa, N. Gokon, Y. Tamaura, 2002, Thermodynamic study based on the phase diagram of the Na2O-MnO-Fe2O3 system for H2 production in three-step water: Solar Energy, 72 (4), 377-383. [ Links ]
Fachinformationszentrum (FIZ) Karlsruhe, 1999, Inorganic Crystal Structure Database, (en línea): Karlsruhe, Germany, base de datos y programa informático, consulta 13 de septiembre de 2007. [ Links ]
Kodama, T., M. Ookubo, S. Miura, Y. Kitayama, 1996, Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type MnxFe3-xO4 by coprecipitation: Materials Research Bulletin, 31(12), 1501-1512. [ Links ]
Liu, C., B. Zou, J. Rondinone, Z.J. Zhang, 2000, Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites: Jorunal Physics Chemistry B, 104 (6), 1141-1145. [ Links ]
Lutterotti, L. S.; Matthies, H.; Wenk, R., 2003, MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more (en línea), in Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), Vol. 1, 1999, Version 1.993 (programa informático), <<993 (programa informático), http://www. ing.unitn.it/luttero/maud .>>, consulta: 12 de noviembre de 2006. [ Links ]
Madsen, I., N.V.Y. Scarlett, L.M.D. Cranswick, T. Lwin, 2001, Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 1a to 1h: Journal of Applied Crystallography, 34, 409- 426. [ Links ]
Magini, M., N. Burgio, A. Iasonna, S. Martelli, F. Padella, E. Paradiso, 1993, Estimation of entrapped powder temperature during mechanical alloying: Journal of Materials Synthesis and Processing, 1, 135-141. [ Links ]
Magini, M. , A. Iasonna, 1995, Energy Transfer in Mechanical Alloying: Materials Transaction, JIM, Japan Institute of Metals, 36 (2), 123-133. [ Links ]
Maurice, D., T.H. Courtney, 1990, Milling and mechanical alloying of inorganic nonmetallics: Metallurgical and Materials Transactions A, 21(7), 1519-1525. [ Links ]
Rietveld, H, 1967, Line profiles of neutron powder-diffraction peaks for structure refinement: Acta Crystallographica, 22, 151-155. [ Links ]
Saferikova, M., L. Safarik, 2001, The application of magnetic techniques in biosciences: Magnetic and Electrical Separation, 10(2), 223- 252. [ Links ]
Sun, S., H. Zeng, B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li., 2004, Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles: Journal of the American Chemical Society, 126(37), 11458-11459. [ Links ]
Tamaura, Y., Ueda, J. Matsunami, N. Hasegawa, M. Nezuka, T. Sano, M. Tsuji, 1999, Solar Hydrogen Production by Using Ferrites: Solar Energy, 65(1), 55-60. [ Links ]
Tamaura, Y. , S. Steinfeld, P. Kuhn, K. Ehrensberger, 1995, On the oxygen-releasing step in the water-splitting thermochemical cycle by MnFe2O4-Na2CO3 system: Energy, 20(2), 325-330. [ Links ]
Tamaura, Y. , M. Kojima, T. Sano, Y. Ueda, N. Hasegawa, M. Tsuji, 1998, Thermodynamic evaluation of water splitting by a cation-excessive (Ni, Mn) ferrite: International Journal Hydrogen Energy 23(12), 1185-1191. [ Links ]
Young, R., 1993, The Rietveld Method, In: Ed. Institute Union of Crystallography, Chapter 2, The Early Days: a Retrospective View, Oxford, University Press, New York. [ Links ]
Recibido: 09 de Marzo de 2007; Revisado: 31 de Marzo de 2007; Aprobado: 16 de Abril de 2007