SciELO - Scientific Electronic Library Online

 
vol.16 número3Tutor Inteligente con reconocimiento y manejo de emociones para MatemáticasRedes sociales en línea y la capacidad de memorización de los estudiantes universitarios índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista electrónica de investigación educativa

versión On-line ISSN 1607-4041

REDIE vol.16 no.3 Ensenada nov. 2014

 

Artículos

 

Una plataforma para la implementación de cursos en línea adaptativos: descripción y punto de vista de los docentes

 

A Platform for the Implementation of Adaptive On-line Courses: Description and Teachers' Point of View

 

Julián Moreno Cadavid1, Demetrio Arturo Ovalle Carranza1, Rosa María Vicari2

 

1 Universidad Nacional de Colombia-Medellín. Carrera 80, 65-223 Oficina M8A 311. Medellín (Antioquia), Colombia. jmoreno1@unal.edu.co, dovalle@unal.edu.co

2 Universidade Federal do Rio Grande do Sul, Brazil. rosa@inf.ufrgs.br

 

Recibido: 1 de marzo de 2013;
Aceptado para su publicación: 15 de octubre de 2013.

 

Resumen

La adaptación es una funcionalidad deseable de los cursos en línea pues, permite la consideración de las necesidades y características propias de cada estudiante. Pese a esto, no es común que los profesores adopten tecnologías relacionadas con esta funcionalidad, lo cual se debe principalmente a: a) el desconocimiento de herramientas de autor apropiadas; y b) la resistencia frente a su uso. El presente estudio tiene dos propósitos. El primero es presentar una herramienta de autor para crear cursos en línea adaptativos considerando tres funcionalidades particulares: secuenciación del currículo, presentación de contenido, y evaluación. El segundo es presentar una validación de dicha herramienta con usuarios reales, más específicamente 51 profesores de básica primaria y secundaria. Los resultados obtenidos muestran que pese a existir desconfianza por parte de los profesores a la hora de utilizar la herramienta, existe un interés general por contar con una alternativa que les permita brindar una experiencia de enseñanza/aprendizaje individualizada.

Palabras clave: Adaptabilidad, Sistema de autor, Currículo, Evaluación.

 

Abstract

Adaptation is a desirable feature in on-line courses which allows for the consideration of students particular characteristics and needs. However, it is not common for teachers to embrace technologies related to this feature. This phenomenon may be mainly attributed to: a) unawareness of appropriate authoring tools, and/or b) resistance to their use. Regarding this panorama, this research has two purposes. The first purpose is to present a web platform to create adaptive on-line courses that considers three adaptive functionalities: curriculum sequencing, content presentation and assessment. The second purpose is to present a validation for such platform with real users, more specifically, 51 teachers of K-12. The obtained results show that even if there was general distrust while using the platform, there was also an overall interest in rely on a tool that grants teachers in providing an individualized learning experience.

Keywords: Adaptability, Authoring system, Curriculum, Assessment.

 

I. Introducción

Una de las principales críticas que reciben los cursos en línea es la aproximación "lo mismo para todos" (interpretación de la frase original en inglés "one size fits all") que tales cursos usualmente siguen (Stewart, Cristea, Brailsford y Ashman, 2005). Dicha aproximación significa que la mayoría de los cursos proveen la misma experiencia de aprendizaje estática a todos los estudiantes, sin considerar sus diferencias particulares. De hecho, tal como lo afirman Karampiperis y Sampson (2005), los cursos en línea generalmente sufren de altas tasas de deserción porque los estudiantes se sienten insatisfechos en cursos que ni los motivan ni se ajustan a sus necesidades.

Como alternativa para resolver este inconveniente, diversas aproximaciones han surgido en las últimas décadas. Una de ellas es conocida como los sistemas educacionales adaptativos. Aquí el término adaptativo no debe confundirse con adaptable. Los sistemas que permiten a los usuarios alterar ciertos parámetros de configuración y alterar su comportamiento correspondiente de una manera explícita son denominados adaptables. Por su parte, los sistemas que se adaptan por ellos mismos a los usuarios basados en las inferencias realizadas automáticamente sobre sus necesidades, se denominan adaptativos (Oppermann y Kinshuk, 1997).

Con el fin de suministrar dicha experiencia adaptativa en el contexto educativo, sobresalen dos aproximaciones diferentes: los Sistemas Hipermedia Educacionales Adaptativos (SHEA) y los Sistemas Tutoriales Inteligentes (STI).

Por un lado, el objetivo principal de los SHEA es presentar el dominio de conocimiento a los estudiantes de forma adaptada a ellos con la particularidad, como su nombre lo indica, de que el formato de presentación se basa en contenido hipermedia, es decir, hipertexto y multimedia. Bajo el principio de que de esta manera se incrementa significativamente la velocidad de aprendizaje.

Por otro lado, una definición general de los STI es que son sistemas de enseñanza que incorporan componentes inteligentes, comúnmente asociados a técnicas de inteligencia artificial. Sin embargo, diferentes autores extienden dicha definición agregando que estos sistemas pueden contar con procedimientos y representaciones de conocimiento propios de los campos de lingüística computacional y de las ciencias de la computación (Samuelis, 2007).

Como una evolución natural, las dos aproximaciones descritas previamente, los SHEA y los STI, se mezclaron en lo que se conoce como Sistemas Educacionales Inteligentes y Adaptativos (SEIA) tratando de aprovechar las principales fortalezas de ambos puntos de vista. Más específicamente, se puede decir que de los SHEA heredaron varias funcionalidades como la presentación adaptativa de contenido educativo y el soporte adaptativo a la navegación, mientras que de los STI heredaron algunas como la secuenciación del currículo, la evaluación adaptativa, el análisis inteligente de soluciones, el soporte a la solución de problemas, el soporte colaborativo adaptativo, entre otras (Brusilovsky y Peylo, 2003).

Otra característica importante de los SEIA es que en este momento no sólo están disponibles para los investigadores, por el contrario, también están disponibles para los docentes. ¿Significa esto que en general los docentes han adoptado esta tecnología en sus cursos en línea? La desafortunada respuesta a este interrogante es que no. La principal causa de esta realidad es que la mayoría de los docentes o no están al tanto siquiera de la existencia de los SEIA o no tienen conocimiento de herramientas de autor que les permitan adoptarlos de una manera sencilla. Esta problemática es precisamente el objeto de estudio de este artículo, el cual se divide en dos partes principales. En la primera se describen con cierto nivel de detalle tres funcionalidades de los SEIA y se explica cómo pueden ser empleadas en la versión prototipo de una herramienta de autor llamada "Doctus", que consiste en una plataforma Web para crear cursos en línea adaptativos. La segunda parte presenta el reporte de una experiencia con 51 docentes de básica primaria y secundaria con dicha plataforma. El reporte incluye información cuantitativa recolectada a partir de un cuestionario con una escala tipo Likert de cinco puntos, así como una discusión de los comentarios cualitativos recibidos por los docentes encuestados.

 

II. Funcionalidades Adaptativas

2.1 Secuenciación del currículo

Según Brusilovsky (2003), el punto de partida de cualquier sistema adaptativo es un modelo del dominio bien estructurado compuesto por un conjunto de elementos de conocimiento pequeños. Tales elementos son denominados de diferente manera por distintos autores: conceptos, ítems de conocimiento, temas, elementos de aprendizaje; pero en todos los casos denotan fragmentos elementales del dominio. En Doctus, con el fin de utilizar una terminología familiar para los docentes, se usó para este fin la noción de objetivo de aprendizaje. También conocidos como objetivos educativos, objetivos pedagógicos y otras denominaciones en diversas investigaciones, los objetivos de aprendizaje pueden ser definidos como declaraciones que describen, en términos de comportamiento observables, los resultados que se esperan del proceso de enseñanza/aprendizaje.

La manera de estructurar estos objetivos en Doctus, y por tanto el modelo del dominio, es por medio de un grafo dirigido simple como el presentado a manera de ejemplo en la Figura 1 para un curso hipotético sobre Historia de la Filosofía. Los nodos (círculos) representan los objetivos, mientras que las aristas (líneas continuas) representan las relaciones de composición. Esto significa que un objetivo puede ser atómico o compuesto. La estructura resultante es bastante natural para los docentes, pues les permite representar sus cursos de una manera jerárquica, de la misma forma que lo harían dividiendo un curso en temas y subtemas, o pensando en un libro de texto, en capítulos y subcapítulos. La única diferencia es que esta estructura les permite tener un nivel de desagregación tan pequeño o tan grande como los docentes requieran.

Como lo afirman Knutov, De Bra y Pechenizkiy (2009), este tipo de modelo del dominio, donde todos los elementos son estructurados minuciosamente y de manera jerárquica, es el que permite que el proceso de adaptación se lleve a cabo. De hecho, la mayoría de los sistemas adaptativos que se citan en la literatura adoptan esquemas similares al presentado aquí. Las únicas diferencias entre unos y otros yacen básicamente en el nombre de los elementos, en las restricciones de conexión, y en la profundidad de las relaciones de jerarquía.

Otra ventaja de este esquema es que los docentes pueden definir relaciones de prerrequisitos entre los objetivos de aprendizaje para establecer una secuencia lineal dentro del curso. La Figura 1 muestra este tipo de relaciones mediante líneas punteadas. De esta manera Doctus permite crear cursos que pueden ser completamente lineales, completamente libres, o un punto intermedio, como es el caso presentado en la Figura 1.

Una vez el modelo del dominio está definido, el siguiente paso es determinar cómo debe ser desarrollado por los estudiantes. Para esto, Doctus usa la noción de actividad, teniendo como base que un objetivo de aprendizaje puede alcanzarse por medio de la realización de una o varias actividades. Una actividad puede ser, por ejemplo, llevar a cabo una lectura, resolver un ejercicio, hacer la discusión de un contenido, etc. Tener esta estructura genérica de objetivos y actividades es lo que le permite a Doctus ser una plataforma genérica en la cual los profesores pueden crear cursos con todo tipo de temas y hacer uso de diferentes consideraciones pedagógicas. Lo último porque dichas consideraciones se verían reflejadas en las actividades definidas y en el orden de realización de las mismas.

Al definirse todas las actividades correspondientes a los objetivos es cuando la secuenciación del currículo puede llevarse a cabo. Según Brusilovsky y Peylo (2003), el propósito de dicha secuenciación es brindarle al estudiante, de manera individual, una secuencia de temas a aprender junto con las tareas para hacerlo. En otras palabras, esta funcionalidad le ayuda al estudiante a encontrar el camino óptimo a través de todo el contenido disponible.

La secuenciación del currículo se puede diferenciar generalmente entre secuenciación del conocimiento y secuenciación de tareas. El primero determina el siguiente elemento del dominio de conocimiento a ser abordado, mientras que el segundo determina la siguiente tarea a ser desarrollada dentro del elemento actual (Chen, Liu y Chang, 2006). Ambos niveles de secuenciación son incluidos en Doctus: el de conocimiento se refiere a los objetivos de aprendizaje y el de tareas a las actividades. Un ejemplo de ello puede verse en la Figura 1. Si un estudiante aprueba el objetivo 1 (según el proceso de evaluación que se explica más adelante), la secuenciación de conocimiento activará automáticamente el objetivo 2, donde el estudiante podrá desarrollar ya sea el 2.1 o el 2.2. Una vez que el estudiante se adentra en uno de esos objetivos, la secuenciación de tareas le presentará las actividades correspondientes según el orden establecido para ello por el docente.

2.2 Presentación de contenido

Es dentro de las actividades que conforman los objetivos de aprendizaje donde los docentes pueden agregar archivos para presentar el contenido a los estudiantes. La idea no es que el mismo sea simplemente dividido en partes. Por el contrario, la intención es que el contenido completo de una actividad sea "encapsulado" dentro de un único archivo para esa actividad, pero en diversos medios de presentación. Volviendo al ejemplo de la Figura 1, un docente podría agregar tres tipos de archivos diferentes para una actividad introductoria, como pueden ser un video, un archivo de texto y una presentación. De esta forma cada estudiante recibiría un único archivo dependiendo de sus características.

Más específicamente, las características de los estudiantes consideradas por Doctus son sus estilos de aprendizaje predominantes. Para justificar la incorporación de dicha característica dentro del mecanismo de presentación de contenido es importante mencionar que numerosos estudios han demostrado que la consideración de los estilos de aprendizaje es un factor fundamental que afecta significativamente el rendimiento de los estudiantes (Stash, 2007). Existen sin embargo docenas de modelos diferentes de estilos de aprendizaje. Coffield, Moseley, Hall, y Ecclestone (2004) mencionan más de 70. Entre todas estas alternativas, Doctus adopta el modelo de estilos de aprendizaje de Felder (Felder y Silverman, 1988). Este modelo define cuatro dimensiones dicotómicas: visual/verbal, secuencial/global, activo/reflexivo, y sensitivo/intuitivo. Considerando esto, cuando un docente agrega un contenido educativo a una actividad debe primero subir el archivo correspondiente y luego especificar ciertos metadatos del mismo entre los que se incluye la valoración de dichas dimensiones. Para cada dicotomía los docentes deben determinar hacia cual se inclina el archivo y en que grado, o si se puede considerar neutral.

Una vez que el docente realiza este proceso de incorporar uno o más archivos a una actividad y determinar los metadatos correspondientes, la adaptación de contenido puede llevarse a cabo. Más específicamente, cuando un estudiante está desarrollando una actividad, Doctus determina cuál de los archivos disponibles es el más adecuado para él o ella. Para esto se hace uso de una ecuación simple basada en el método propuesto por Moreno, Ovalle y Vicari (2010).

Esta ecuación mide la distancia euclidiana entre un vector que representa a un estudiante Si y un archivo Mj. Mientras menor sea esta medida, más adecuado será el archivo para el estudiante. En el caso de los estudiantes, tal vector se determina mediante un cuestionario conocido como el test de Felder para estilos de aprendizaje, el cual se compone de 44 preguntas, 11 para cada dicotomía, en las que el estudiante debe responder (implícitamente) a favor de uno de los dos extremos. Así, cuando finaliza el cuestionario, cada estudiante tendrá 8 valores entre 0 y 11 para cada extremo. Restando el valor del extremo de la derecha al de la izquierda por cada dicotomía se obtienen 4 valores entre -11 y 11, los cuales se pueden llevar a una escala [-1,1] dividiéndolos por 11. En este formato tales valores son fácilmente interpretables: entre más cercano a +1, más inclinado se encontrará el estudiante hacia el extremo derecho de la dicotomía, y viceversa.

En el caso de los archivos, una vez que el docente determina por medio de la interfaz la inclinación de un archivo a cada dicotomía, Doctus convierte los 5 niveles (muy inclinado a la izquierda, inclinado a la izquierda, neutral, inclinado a la derecha, muy inclinado a la derecha) en valores igualmente espaciados dentro del rango [-1,1]: -1, -0.5, 0, 0.5 y 1.

Con el fin de aclarar el procedimiento completo, considérese el siguiente ejemplo hipotético. Hay un estudiante S1 representado por el vector {0.27, -0.45, 0.64, -0.27} y dos archivos disponibles M1 y M2 para la actividad que está desarrollando. M1 es representado por el vector {1, -1, -0.5, 0.5} y M2 por {0, -1, 1, -0.5}. De acuerdo con la Ecuación 1, D11 sería 1.65 y D12 0.75. Esto significa que para este caso hipotético M2 sería el archivo más adecuado de los disponibles para S1. Nótese que en el caso extremo, un valor de 0 en la distancia euclidiana significaría una correspondencia total entre el estilo de aprendizaje inferido para el estudiante y el estilo de aprendizaje para el que está enfocado el archivo según la valoración del docente. Por el contrario, un valor de 16 significaría una disonancia total.

2.3 Evaluación

Tanto en los cursos en línea como en los cursos presenciales tradicionales, la evaluación es una parte indispensable del proceso de enseñanza/aprendizaje, no sólo porque permite determinar la eficiencia de dicho proceso mediante medidas observables, sino también porque tales medidas pueden ayudar a definir una ayuda adecuada para cada estudiante. En Doctus se adopta un enfoque conocido como Evaluación Adaptativa Computarizada (EAC) el cual difiere de la naturaleza estática de las evaluaciones tradicionales en que su proceso de construcción es dinámico y la cantidad de preguntas no es predefinida. La idea de la EAC es aplicar a un estudiante determinado únicamente aquellos ítems de evaluación, entiéndase preguntas, que son más adecuados para determinar su rendimiento. Como consecuencia de esto, la EAC es usualmente más eficiente que la evaluación tradicional, es decir, aquella de preguntas fijas, pues provee medidas más precisas para pruebas de la misma longitud o pruebas más cortas para medidas de la misma precisión (Ponsoda, 2000).

Desde la perspectiva del estudiante, la dificultad en las pruebas parece que estuviera a la medida de su nivel de conocimiento, es por este motivo que en los primeros sistemas que usaron este enfoque se le llamó "evaluación a medida" (interpretación de la frase en inglés "tailored testing". Así, por ejemplo, si un estudiante se desenvuelve bien en una pregunta de dificultad intermedia, habrá una alta probabilidad de que la siguiente sea un poco más difícil. En otro caso, si el estudiante se desenvuelve mal, una pregunta más fácil sería el paso a seguir más adecuado.

Esto no significa que la intención de la EAC sea facilitar las evaluaciones para los estudiantes presentándoles preguntas sencillas porque su nivel de conocimiento estimado sea bajo, ni tampoco complicar las evaluaciones de aquellos que han contestado acertadamente debido a que dominan el tema. Lo que busca en realidad la EAC es evitar la frustración que puede llegar a sentir un estudiante cuando se bloquea mentalmente al afrontar una prueba que se le hace difícil, así como el aburrimiento que puede llegar a sentir quien se ve en la necesidad de responder preguntas sobre temas que ya ha demostrado dominar.

Para lograr esto, el procedimiento general de la EAC consiste en un algoritmo iterativo que se compone de los siguientes pasos (Thissen y Mislevy, 2000):

1. Se busca en el repositorio de ítems de evaluación aquel que sea más adecuado según el nivel estimado actual de conocimiento del estudiante.

2. El ítem elegido es presentado al estudiante, quien lo responderá correcta o incorrectamente.

3. La estimación del nivel de conocimiento se actualiza a partir de la respuesta obtenida, así como de todas las que le precedieron.

4. Los pasos 1 a 3 se repiten hasta que se alcanza un criterio de finalización.

Para implementar los pasos 2 y 3 existen diversas aproximaciones, siendo una de las más conocidas la Teoría de Respuesta al Ítem (TRI). Previamente conocida como teoría de rasgos latentes, la TRI intenta proveer bases probabilísticas al problema de medir rasgos no directamente observables (rasgos latentes) y su nombre proviene de considerar los ítems o preguntas como las unidades fundamentales de una prueba de evaluación en vez de la calificación final, como sucede en las aproximaciones tradicionales.

Según esta teoría, la relación entre el rasgo θ, que puede interpretarse como la habilidad o nivel de conocimiento de un estudiante, y su respuesta a cada ítem puede ser explicada a través de una función monótona creciente conocida como Curva Característica del Ítem (CCI), la cual establece la probabilidad de una respuesta correcta. Dependiendo de la naturaleza y parámetros de dicha función, existen varios modelos que pueden aplicarse. En Doctus se emplea una variación del modelo logístico de tres parámetros o 3PL cuya fórmula se presenta en la Ecuación 2.

El dominio de esta función es el intervalo abierto (c,1) siendo ambos valores sus límites asintóticos. Por su parte, el rango es el intervalo (-∞,+∞) pero para fines prácticos sólo se considera el intervalo cerrado [-3,3].

En el contexto de la TRI, el valor de adivinación c define la probabilidad de obtener una respuesta correcta independientemente del nivel de conocimiento del estudiante. En otras palabras, este parámetro es inherente al tipo de pregunta y es calculado automáticamente por Doctus. Por ejemplo, en una pregunta de tipo Falso/Verdadero, dicho valor es igual a 0.5. Por otro lado el valor de dificultad b define que tanto se ajusta el ítem al nivel de conocimiento del estudiante. En términos gráficos, define la ubicación del punto de inflexión de la curva a lo largo del eje θ.

Doctus se encarga automáticamente de todo el procedimiento de la EAC incluyendo todos los cálculos involucrados, es decir, que el mismo es completamente transparente tanto para docentes como para estudiantes. Siendo así la responsabilidad de los docentes yace en la creación de un banco de ítems de evaluación lo suficientemente grande para cada objetivo de aprendizaje (entre más, mejor) y en determinar la dificultad b de cada ítem. Tal dificultad es definida por el docente en una escala de 1 a 100 y luego Doctus la escala a un valor que se ajusta a la CCI. Entre más fácil la pregunta menor el valor y viceversa.

Determinar tal valor no es una labor simple. De hecho, diversos estudios recomiendan que debe ser calculado automáticamente a partir de respuestas previas de estudiantes. Esto, sin embargo, requeriría de una gran cantidad de información disponible y, por tanto, no es el camino seguido en Doctus. Lo que sí provee Doctus para facilitar esta labor es un mensaje informativo sobre dicho valor: que debe ser entendido como la dificultad propia del ítem independiente de su formulación. En el contexto de la educación secundaria por ejemplo, la pregunta: ¿en qué año Colón descubrió América? Es relativamente simple tanto si se formula como una pregunta de selección múltiple como si se formula como una de respuesta libre. Por otro lado, dentro del mismo contexto otra pregunta como: ¿cuál es el peso atómico del Bario? Puede ser considerada como difícil incluso si es formulada como una pregunta de Falso/Verdadero.

 

III. Experiencia de profesores

Como se mencionó al final de la sección de introducción, la segunda parte de este artículo presenta la validación de la plataforma descrita, Doctus, por parte de usuarios finales reales. Al hablar de usuarios finales se pueden diferenciar dos actores: los docentes y los estudiantes. Este estudio sin embargo se enfoca únicamente en la experiencia de los docentes y en particular en: a) cuáles son sus opiniones respecto a cómo Doctus implementa las tres funcionalidades adaptativas descritas; y b) cómo perciben su rol y las responsabilidades que el mismo representa para que dichas funcionalidades puedan llevarse a cabo.

Más específicamente, esta validación se realizó con 51 docentes de educación básica primaria y secundaria, 27 hombres y 24 mujeres con una edad promedio de 34.61 años y desviación estándar de 7.42. Todos los sujetos estaban inscritos en el curso "Taller TICS y Educación en Ciencias I" de la maestría en Enseñanza de las Ciencias Exactas y Naturales en la Universidad Nacional de Colombia-Sede Medellín durante el primer semestre de 2012. El proceso se realizó durante cuatro horas presenciales más un estimado de cuatro a 8 ocho horas de trabajo extra, dentro del período comprendido del 14 al 28 de abril. Las sesiones presenciales se dividieron en dos sesiones de dos horas cada una. Ambas sesiones fueron grabadas en video y luego subidas a YouTube de manera que todos pudieran revisarlas las veces que fuera necesario. Para el trabajo extra se puso a disposición material adicional compuesto de una serie de videos tutoriales, 14 en total, que también fueron subidos a YouTube.

La validación se dividió en cinco etapas, siendo la primera de ellas una breve introducción Doctus junto una descripción del objetivo de la validación. La segunda etapa consistió en una charla sobre los principales conceptos de los SEIA, así como sobre su correspondiente instanciación en Doctus. Estas primeras dos etapas fueron cubiertas durante la primera sesión presencial.

Durante la tercera etapa todos los sujetos de prueba interactuaron directamente con Doctus (http://doctus.medellin.unal.edu.co), pero adoptando el rol de estudiante en un curso de prueba. Dicho curso les permitió experimentar de primera mano cómo un estudiante percibe las funcionalidades adaptativas. Esta etapa dio inicio en la primera sesión presencial y finalizó durante el trabajo extra.

En la cuarta etapa los sujetos interactuaron de nuevo con Doctus, pero esta vez adoptando el rol de docentes y creando sus propios cursos, o al menos parte de ellos, desde cero. En esta etapa pudieron experimentar, con una guía apropiada, lo que un curso adaptativo implica, es decir, cuánto esfuerzo involucra su construcción. Esta etapa dio inicio durante la segunda sesión presencial y finalizó durante el trabajo extra.

En la quinta y última etapa se llevó a cabo un test de usabilidad para recopilar las percepciones de los sujetos acerca de Doctus y de todos los conceptos sobre adaptación subyacentes. Esta etapa fue introducida en la segunda sesión presencial pero fue desarrollada completamente durante el trabajo extra. Con el fin de cuantificar las opiniones de los sujetos se diseñó un cuestionario usando una escala tipo Likert: valores enteros entre 1 (el más bajo) y 5 (el más alto). Las preguntas utilizadas se presentan en la Tabla I y en todos los casos comenzaban con la frase: "De acuerdo a su interacción previa con Doctus, cómo calificaría usted ..."

La Figura 2 presenta los resultados cuantitativos de este cuestionario, mientras que la Tabla II presenta un resumen de los mismos. Adicional a las medidas cuantitativas, se alentó a todos los sujetos a expresar sus juicios cualitativos sobre los temas tratados en cada pregunta. Esto se hizo agregando un espacio en blanco al final de cada una con la frase: "Si tiene cualquier comentario, por favor expréselo aquí".

En términos generales la mayoría de los sujetos dieron altas calificaciones, 4 y 5, a todas las preguntas. Más específicamente, en las preguntas 1 y 2, relacionadas con la definición del dominio de conocimiento, los sujetos expresaron que se sentían cómodos organizando sus cursos según la estructura propuesta. Por ejemplo, respecto a la pregunta 1, que se refiere a la definición de la jerarquía de objetivos de aprendizaje, alguien expresó:

Ayuda mucho a estructurar el conocimiento. (Hombre, 30 años).

Respecto a la pregunta 2, que se refiere a la definición de las actividades y la incorporación de estrategias pedagógicas, expresaron que encontraban este aspecto muy importante e interesante. Sin embargo algunos comentaron su preocupación frente al esfuerzo que implica:

Es importante, ya que nos lleva a pensar y repensar nuestro quehacer pedagógico, nuestra forma de realizar actividades, así como su evaluación. (Hombre, 53 años).

Implica más trabajo para el docente pero después todo saldría perfecto. (Mujer, 27 años).

En la pregunta 3, relacionada con la implementación de la secuenciación adaptativa, muchos sujetos dijeron que era sumamente apropiada, aunque algunos expresaron que hubieran preferido una interfaz más atractiva:

Es bastante intuitivo. (Hombre, 36 años).

Sería interesante mejorar un poco la interfaz, pero es muy funcional. (Hombre, 33 años).

En la pregunta 4, que se refiere a la especificación de las características cognitivas asociadas a los archivos en las actividades, los sujetos encontraron difícil su caracterización en términos de estilos de aprendizaje:

A veces resulta algo complicado. (Hombre, 30 años).

Es algo subjetivo porque casi siempre se asocian dos estilos opuestos y no es fácil hacer una calificación exacta o correcta. (Hombre, 46 años).

En la pregunta 5 la mayoría de los sujetos opinaron que la presentación adaptativa de contenido era una de las funcionalidades más importantes de toda la plataforma:

Excelente porque tiene en cuenta la gran variedad de estudiantes que tenemos. (Mujer, 27 años).

Permite desarrollar contenidos dirigidos a los estudiantes con mayores posibilidades de éxito en el proceso de aprendizaje. (Hombre, 53 años).

De todas las preguntas, la 6, que se refiere a la creación del banco de ítems de evaluación, fue la que obtuvo la menor valoración promedio y la más alta desviación estándar. De hecho, fue la que obtuvo el porcentaje más alto de valoraciones por debajo de 3 puntos. Para los sujetos, aunque eran conscientes de que este proceso es importante y necesario, su realización resultó difícil y laboriosa:

Requiere mucho trabajo, ya que no estamos acostumbrados a categorizar por nivel las preguntas, aunque es lo ideal. (Mujer, 31 años).

Sin embargo, una vez creado el banco de ítems de evaluación, la mayoría de los sujetos opinaron que el procedimiento de evaluación adaptativa era mejor que el tradicional (pregunta 7). Aun así, algunos de ellos expresaron algo de recelo sobre el procedimiento:

Es bueno tener en cuenta las capacidades de cada estudiante" hombre, 31 años.

No comparto el hecho de preguntas de menor nivel para unos que para otros. (Mujer, 27 años).

 

IV. Conclusiones

Pese a que la adaptación es una característica deseable de los cursos en línea, la mayor parte de las veces esta tecnología se encuentra confinada a ambientes académicos y raramente es adoptada por docentes en ambientes educativos reales. Este fenómeno puede deberse a múltiples causas, siendo una de ellas el desconocimiento por parte de dichos docentes de las funcionalidades adaptativas que pueden emplearse, así como de herramientas de autor que permitan usarlas.

El presente estudio se enfoca en esta problemática, haciendo una breve descripción de la plataforma Web llamada Doctus, la cual considera tres funcionalidades adaptativas: la secuenciación del currículo usando una estructura de prerrequisitos, la presentación de contenido considerando estilos de aprendizaje, y la evaluación basada en el enfoque de la teoría de respuesta al ítem. Sin embargo, más que presentar todos los detalles acerca de los algoritmos que dichas funcionalidades implementan, la idea es exponer las ideas subyacentes y los procedimientos generales, esperando así reducir la brecha entre esta tecnología y los usuarios finales que deberían usarla: los docentes.

Para lograr este cometido el estudio también presentó la experiencia frente a Doctus de 51 docentes de educación básica primaria y secundaria. Los resultados obtenidos fueron sumamente valiosos en el sentido de que mostraron que dichos docentes se concientizaron de la importancia de considerar las diferencias individuales de los estudiantes. Asimismo, mostraron que se sintieron entusiasmados a la hora de incorporar nuevos modelos como los estilos de aprendizaje de Felder, como también nuevos procedimientos como la Evaluación Adaptativa Computarizada dentro del proceso de enseñanza/aprendizaje.

Sin embargo, no todo es color de rosa. Los resultados también demostraron que para muchos docentes las tareas requeridas para que tales funcionalidades adaptativas se lleven a cabo les parecieron complejas. Para muchos, por ejemplo, el proceso de presentación adaptativa de contenido les pareció difícil a la hora de definir a qué estilo de aprendizaje estaba enfocado un determinado archivo que incorporaban a una actividad. Asimismo, en el caso de la evaluación adaptativa muchos expresaron que la creación del banco de ítems era muy laboriosa.

Como comentario final debemos decir que, pese a estos contratiempos, esperamos que en el futuro cercano más y más docentes acojan esta tecnología en sus cursos en línea. Cada día surgen más evidencias a favor de los Sistemas Educacionales Inteligentes y Adaptativos, lo que consideramos que falta todavía es la socialización de herramientas de autor robustas y amigables que ayuden a superar los temores y dificultades de quienes son los primeros llamados a usarlas: los docentes.

 

Reconocimiento

Agradecemos a los docentes y estudiantes del curso Taller TICS y Educación en Ciencias I, de la Maestría en Enseñanza de las Ciencias Exactas y Naturales en la Universidad Nacional de Colombia-Sede Medellín, su participación en el presente estudio durante el primer semestre de 2012.

 

Referencias

Brusilovsky, P. (2003). Developing adaptive educational hypermedia systems: from design models to authoring tools. En Murray et al. (Eds.) Authoring tools for advanced technology learning environment (pp. 377-409). Dordrecht, Países Bajos: Kluwer Academic Publishers.         [ Links ]

Brusilovsky, P. y Peylo, C. (2003). Adaptive and Intelligent web-based educational systems. International Journal of Artificial Intelligence in Education, 13, 156-169.         [ Links ]

Chen, C. H., Liu, C. Y. y Chang, M. H. (2006). Personalized curriculum sequencing utilizing modified item response theory for web-based instruction. Expert Systems with Applications, 30, 378-396.         [ Links ]

Coffield, F., Moseley, D., Hall, E. y Ecclestone, K. (2004). Learning styles and pedagogy in post-16 learning, a systematic and critical review. Londres: Learning and Skills Research Centre.         [ Links ]

Felder, R. y Silverman, L. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674-681.         [ Links ]

Karampiperis, P. y Sampson, D. (2005). Adaptive learning resources sequencing in educational hypermedia systems. Educational Technology & Society, 8(4), 128-147.         [ Links ]

Knutov, E., De Bra, P. y Pechenizkiy, M. (2009). AH 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Review of Hypermedia and Multimedia, 15(1), 5-38.         [ Links ]

Moreno, J., Ovalle, D. y Vicari, R. (2010, Noviembre). Método para la selección de objetos de aprendizaje a partir de características cognitivas del estudiante. Artículo presentado en el 21 Simpósio Brasileiro de Informática en Educación, João Pessoa, Brasil.         [ Links ]

Oppermann, R. y Kinshuk, R. (1997). Adaptability and adaptivity in learning systems. Knowledge Transfer, 2, 173-179.         [ Links ]

Ponsoda, V. (2000). Overview of the computerized adaptive testing. Psicológica, 21(1), 115-120.         [ Links ]

Samuelis, L. (2007). Notes on the components for intelligent tutoring systems. Acta Polytechnica Hungarica, 4(2), 77-85.         [ Links ]

Stash, N. (2007). Incorporating cognitive/learning Styles in a general-purpose adaptive hypermedia system. Tesis de doctorado, Technische Universiteit Eindhoven, Países Bajos. Recuperado de http://alexandria.tue.nl/extra2/200710975.pdf.         [ Links ]

Stewart, C., Cristea, A., Brailsford, T. y Ashman, H. (2005, Febrero). Authoring once, delivering many: Creating reusable Adaptive Courseware. Artículo presentado en IASTED International Conference on Web-based Education, Grindelwald, Suiza.         [ Links ]

Thissen, D. y Mislevy, R. (2000). Testing Algorithms. En H. Wainer (Ed.) Computerized adaptive testing: A primer (pp. 101-134). Mahwah, NJ: Lawrence Erlbaum Associates.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons