SciELO - Scientific Electronic Library Online

 
vol.13 número3Evaluación de almidones de malanga (Colocasia esculenta) como agentes coadyuvantes en la remoción de turbiedad en procesos de potabilización de aguaEstudio del sinterizado restringido de polvos utilizado para reparación de fisuras índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México dic. 2014

 

Ingeniería ambiental

 

Effect of the fluidized bed drying on the sturcture and biosorption capability of Pb+2 of agave epidermis

 

Efecto del secado por lecho fluidizado en la estructura y capacidad de biosorción de Pb+2 de epidermis de agave

 

M.T. Hernández-Botello1, J.J. Chanona-Pérez1*, J.A. Mendoza-Pérez2, M. Trejo-Valdez3, G. Calderón-Domínguez1, J.L. Barriada Pereira4, M.E. Sastre de Vicente4, M.J. Perea-Flores5, E. Terres-Rojas6

 

1 Departamento de Ingeniería Bioquímica. * Corresponding author. E-mail: jorge chanona@hotmail.com

2 Departamento de Ingeniería en Sistemas Ambientales ENCB.

3 ESIQIE, IPN, México, D.F.

4 Departamento de Química Física e Enxeñería Química I, Universidade da Coruña, Coruña, Spain.

5 Centro de Nanociencias y Micro y Nanotecnologías, IPN, México, D.F.

6 Laboratorio de Microscopia Electrónica de Ultra Alta Resolución, IMP, México D.F.

 

Received May 29, 2014;
Accepted June 23, 2014.

 

Abstract

A fluidized bed drying study of agave epidermis obtained from wastes of the "pulque" manufacture was made. Drying kinetics modeling and the influence of the operation conditions on the shrinkage, micro structure and biosorption capability of Pb+2 were studied. Drying kinetics was carried out at 50, 60, 70 and 80 °C. Six semi-empirical models were tested and diffusion approach model provided the best fits. Effective diffusivity varied from 3.73xl0-9 to 6.99x10-9 m2s-1, for untreated slabs (UT) and from 3.65x 10-9 to 7.74x10-9 m2s-1 for treated samples (T) with hydrochloric acid. Activation energy was found to be 21.22 and 23.89 kJ/mol for UT and T samples respectively. Shrinkage and the microstructure changes of T slabs were larger than UT samples. T samples dried at 70 and 80 °C showed a reduction in their Pb+2 biosorption capability, caused by a large shrinkage and severe microstructural changes. For UT samples their biosorption capability was increased in relation with increase of the shrinkage and drying temperature. T samples dried at 50 and 60 °C improved their biosorption capability of Pb+2, while UT samples dried at 70 and 80 °C showed a better biosorption capability. These results can be useful for preparation of biosorbents.

Keywords: Agave epidermis, fluidized bed drying, shrinkage, microstructure, biosorption.

 

Resumen

Se realizó un estudio de secado en lecho fluidizado de epidermis de agave obtenida de desechos de la fabricación del "pulque". Se efectuó el modelado de las cinéticas de secado y se estudió la influencia de las condiciones de operación sobre el encogimiento, microestructura y capacidad de biosorción de Pb+2. Las cinéticas fueron hechas a 50, 60, 70 y 80 °C. Seis modelos semi-empíricos fueron probados y el de aproximación a la difusión proporcionó los mejores ajustes. La difusividad efectiva cambio desde 3.73x10-9 a 6.99x10-9 m2s-1 para las placas sin tratar, y desde 3.65x10-9 a 7.74x10-9 m2s-1 para las muestras tratadas con ácido clorhídrico. La energía de activación fue de 21.22 kJ/mol para las muestras sin tratar y 23.89 kJ/mol para las muestras tratadas. El encogimiento y los cambios microestructurales fueron más drásticos en las placas tratadas en comparación con las rebanadas sin tratamiento ácido. El material tratado y secados a 70 y 80 °C, mostro una reducción en su capacidad de biosorción de Pb+2, que fue causado por los cambios microestructurales y un encogimiento severo. Para la muestras sin tratamiento su capacidad de biosorción se incrementó con el encogimiento y la temperatura de secado. Las muestras tratadas y secadas a 50 y 60 °C, mejoraron su capacidad de biosorción. Estos resultados pueden ser útiles para la preparación de biosorbentes.

Palabras clave: epidermis de agave, secado por lecho fluidizado, encogimiento, microestructura, biosorción.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

Mayuric Teresa Hernández Botello wishes to thank CONACYT for the scholarship provided for her studies and international stay. This research was funded through projects 20110627 and 20121001, 20120789, 20130333 and 20140387 at the Instituto Politécnico Nacional (SIP-IPN México) and 133102 of CONACYT.

 

References

Abalone, R., Gastón, A., Cassinera, A., Lara, M.A. (2006).Thin layer drying of Amaranth seed. Biosystems Engineering 93, 179-188.         [ Links ]

Akgun, N., Doymaz I. (2005). Modelling of olive cake thin-layer drying process. Journal of Food Engineering 68,455-461.         [ Links ]

Akmel, D.C., Assidjo, N.E., Kouame, P., Yao, K.B. (2009). Mathematical modeling of sun drying kinetics of thin layer cocoa (Theobroma cacao) beans. Journal of Applied Sciences Research 5, 1110-1116.         [ Links ]

Arabhosseini, A., Huisman, W., van Boxtel, A., Muller, J. (2009). Modeling of thin layer drying of tarragon (Artemisia dracunculus L.). Industrial Crops and Products 29, 53-59.         [ Links ]

Arzate-Vázquez, I., Chanona-Pérez, J.J., Calderón-Domínguez, G., Terres-Rojas. E., Garibay-Febles V., Martínez-Rivas, A., Gutieírrez-López, G.F. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers 87, 289-299.         [ Links ]

Barrozo, M.A.S., Henrique, H.M., Sartori, D.J.M., Freire, J.T. (2006). The use of the orthogonal collocation method on the study of the drying kinetics of soybean seeds. Journal of Stored Products Research 42, 348-356.         [ Links ]

Bessadok, A., Langevin, D., Gouanveí, F., Chappey, C., Roudesli, S., Marais, S. (2009). Study of water sorption on modified Agave fibres. Carbohydrate Polymers 76, 74-85.         [ Links ]

Bhainsa, K.C., D'Souza. S.F. (2008). Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresource Technology 99, 3829-3835.         [ Links ]

Calzetta, A. N. R., Aguerre, R. J., Suarez, C. (2004). Drying characteristics of amaranth grain. Journal of Food Engineering 65, 197-203.         [ Links ]

Chen, D., Zheng, Y., Zhu, X. (2012). Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresource Technology 107, 451-455.         [ Links ]

Chua, K.J., Mujumdar, A.S., Chou, S.K., Hawlader, M.N.A., Ho, J.C. (2000). Convective drying of banana, guava and potato pieces: effect of cyclical variations of air temperature on drying kinetics and color change. Drying Technology 18, 907-936.         [ Links ]

Cihan, A., Kahveci, K., Hacihafizoglu, O. (2007). Modeling of intermittent drying of thin layer rough rice. Journal of Food Engineering 79, 293-298.         [ Links ]

Comte, S., Guibaud, G., Baudu, M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochemistry 41, 815-823.         [ Links ]

Comte, S., Guibaud, G., Baudu, M. (2008). Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Material 151, 185-193.         [ Links ]

Crank, J. (1975). The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford, UK.         [ Links ]

Demir, V., Gunhan, T., Yagcioglu, A.K. (2007). Mathematical modeling of convection drying of green table olives. Biosystems Engineering 98, 47-53.         [ Links ]

Doulia, D., Tzia, K., Gekas, V. (2000). A knowledge base for the apparent mass diffusion coefficient (DEFF ) of foods. International Journal of Food Properties 3, 1-14.         [ Links ]

Doymaz I. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food and Bioproducts Processing 88, 124-132.         [ Links ]

Doymaz, I. (2006). Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering 76, 212-217.         [ Links ]

Doymaz, I. (2005). Drying behavior of green beans. Journal of Food Engineering 69, 161-165.         [ Links ]

Doymaz, I. (2011). Drying of green bean and okra under solar energy. Chemical Industry & Chemical Engineering Quarterly 17, 199-205.         [ Links ]

Evin, D. (2012). Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts Processing 90, 323-332.         [ Links ]

Feng, N., Guo, X., Liang, S., Zhu, Y., Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials 185, 49-54.         [ Links ]

Fernández, L., Castillero, C., Aguilera, J.M. (2005). An application of image analysis to dehydration of apple discs. Journal ofFood Engineering 67, 185-193.         [ Links ]

Gazor, H.R., Mohsenimanesh, A. (2010). Modelling the drying kinetics of canola in fluidized bed dryer. Czech Journal ofFood Sciences 28, 531537.         [ Links ]

Gely, M.C., Santalla, E.M. (2007). Moisture diffusivity in quinoa (Chenopodium quinoa Willd.) seeds: effect of air temperature and initial moisture content of seeds. Journal of Food Engineering 78, 1029-1033.         [ Links ]

Guiné, R.P.F., Fernández, R.M.C. (2006). Analysis of the drying kinetics of chestnuts. Journal of Food Engineering 76, 460-467.         [ Links ]

Gumeta-Chávez, C., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Terrés-Rojas, E., Garibay-Febles, V., Gutiérrez-López, L.G. (2011). Shrinkage and Deformation of Agave atrovirens Karw Tissue during Convective Drying: Influence of Structural Arrangements. Drying Technology: An International Journal 29, 612-623.         [ Links ]

Iguaz, A., San Martín, M.B., Mateí, J.I., Fernández, T., Vírseda, P. (2003). Modelling effective moisture diffusivity of rough rice (Lido cultivar) at low drying temperatures. Journal ofFood Engineering 59, 253-258.         [ Links ]

Iñiguez-Covarrubias, G., Díaz-Teres, R., Sanjuan-Dueñas, R., Anzaldo-Hernández, J., Rowell, R.M. (2001). Utilization of by-products from the tequila industry. Part 2: potential value of Agave tequilana Weber azul leaves. Bioresource Technology 77, 101-108.         [ Links ]

Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering 78, 98-108.         [ Links ]

Kerdpiboon, S., Devahastin, S., Kerr, W.L. (2007). Comparative fractal characterization of physical changes of different food products during drying. Journal of Food Engineering 83, 570-580.         [ Links ]

Kohler, L., Spatz H.-C. (2002). Micromechanics of plant tissues beyond the linear-elastic range. Planta 215, 33-40.         [ Links ]

López-García, M., Lodeiro, P., Herrero, R., Sastre de Vicente, M.E. (2012). Cr (VI) removal from synthetic and real wastewaters: The use of the invasive biomass Sargassum muticum in batch and column experiments. Journal of Industrial and Engineering Chemistry 18, 1370-1376.         [ Links ]

Maldonado, S., Arnau, E., Bertuzzi, M.A. (2010). Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes. Journal of Food Engineering 96, 333-341.         [ Links ]

Markowski, M., Bialobrzewski, I., Modrzewska, A. (2010). Kinetics of spouted-bed drying of barley: Diffusivities for sphere and ellipsoid. Journal of Food Engineering 96, 380-387.         [ Links ]

Mata, Y.N., Blázquez, M.L., Ballester, A., González, F., Muñoz, J.A. (2009). Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal 150, 289-301.         [ Links ]

Mayor, L., Sereno, A.M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering 61, 373-386.         [ Links ]

McLaughlin, C. P., Magee, T.R.A. (1998). The effect of shrinkage during drying of potato spheres and the effect of drying temperature on vitamin C retention. Food and Bioproducts Processing 76, 138-142.         [ Links ]

Miranda, M., Vega-Gálvez, A., García, P., Di Scala, K., Shi, J., Xue, S., Uribe, E. (2010). Effect of temperature on structural properties of Aloe vera (Aloe barbadensis Miller) gel and Weibull distribution for modelling drying process. Food and Bioproducts Processing 88, 138-144.         [ Links ]

Mohammadi, T., Razmi, A., Sadrzadeh, M. (2004). Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination Strategies in South Mediterranean Countries 167, 379-385.         [ Links ]

Niamnuy, C., Devahastin, S. (2005). Drying kinetics and quality of coconut dried in a fluidized bed dryer. Journal of Food Engineering 66, 267-271.         [ Links ]

Njikam, E., Schieve, S. (2012). Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration. Journal of Hazardous Materials 213-214, 242-248.         [ Links ]

Perea-Flores, M.J., Chanona-Peírez, J.J., Garibay-Febles,V., Calderoín-Domíínguez, G., Terreís-Rojas, E., Mendoza-Peírez, J.A., Herrera-Bucio, R. (2011). Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plan (Ricinus communis). Industrial Crops and Products 34, 1057-1065.         [ Links ]

Perea-Flores, M.J., Garibay-Febles, Chanona-Peírez, J.J., V., Calderoín-Domíínguez, G., Méndez-Méndez, J.V., Palacios-González, E., Gutieírrez-López, G.F. (2012). Mathematical modeling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products 38, 64-71.         [ Links ]

Promvonge, P., Boonloi, A., Pimsarn, M., Thianpong, Ch. (2011). Drying characteristics of peppercorns in a rectangular fluidized-bed with triangular wavy walls. International Communications in Heat and Mass Transfer 38, 1239-1246.         [ Links ]

Qi, B.C., Aldrich, C. (2008). Biosorption of Heavy metals from aqueous solutions with tobacco dust. Bioresource Technology 99, 5596-5601.         [ Links ]

Rafiee, S.H., Keyhani, A., Sharifi, M., Jafari, A., Mobli, H., Tabatabaeefar, A. (2009). Thin layer drying properties of soybean (Viliamz Cultivar). Journal of Agricultural Science and Technology 11, 289-300.         [ Links ]

Ramírez, C., Troncoso E., Muñoz J., Aguilera J. M. (2011) . Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering 106, 253-261.         [ Links ]

Roberts, J.S., Kidd, D.R., Padilla-Zakour, O. (2008). Drying kinetics of grape seed. Journal of Food Engineering 89, 450-455.         [ Links ]

Romero-González. J., Gardea-Torresdey, J.L., Peralta-Videa, J.R., Rodríguez, E. (2005). Determination of Equilibrium and Kinetic Parameters of the Adsorption of Cr (III) and Cr (VI) from Aqueous Solutions to Agave Lechugilla Biomass. Bioinorganic Chemistry and Applications 3, 55-68.         [ Links ]

Ruiz-López, I.I., Martínez-Sánchez, C.E., Cobos-Vivaldo, R., Herman-Lara, E. (2008). Mathematical modeling and simulation of batch with airflow reversal. Journal of Food Engineering 89, 310-318.         [ Links ]

Sacilik, K. (2007). Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). Journal of Food Engineering 79, 23-30.         [ Links ]

Sacilik, K., Elicin, A. K., Unal, G. (2006). Drying Kinetics of Uryani plum in a convective hot-air dryer. Journal of Food Engineering 76, 362-368.         [ Links ]

Sansiribhan, S., Devahastin, S., Soponronnarit, S. (2012) . Generalized microstructural change and structure-quality indicators of a food product undergoing different drying methods and conditions. Journal of Food Engineering 109, 148-154        [ Links ]

Santiago-Pineda, T., Anaya-Sosa, I., Alamilla-Beltrán, L., Chanona-Pérez, J. J., Gutiérrez-López G. F., Vizcarra-Mendoza, M. (2007). Hidrodynamics and operational parameters of a continuous multistage vertical fluidized bed system. Revista Mexicana de Ingeniería Química 6, 59-63.         [ Links ]

Schiewer.S. y Balaria, A. (2009). Biosorption of Pb+2 by original and protonated citrus peels: Equilibrium, Kinetics, and mechanism. Chemical Engineering Journal 146, 211-219.         [ Links ]

Senadeera, W., Bhandari, B. R., Young G., Wijesinghe, B. (2003). Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering 58, 277-283.         [ Links ]

Shen, F., Peng, L., Zhang, Y., Wu, J., Zhang, X., Yang, G., Peng, H., Qi, H., Deng, S. (2011). Thin layer drying kinetics and quality changes of sweet sorghum stalk for ethanol production as affected by drying temperature. Industrial Crops and Products 34, 1588-1594.         [ Links ]

Shivhare, U.S., Gupta, A., Bawa, A.S., Gupta, P. (2000). Drying characteristics and product quality of okra. Drying Technology 18,409-419.         [ Links ]

Sirisomboon, P., Kitchaiya, P. (2009). Physical properties of Jatropha curcas L. kernels after heat treatments. Biosystems Engineering 102, 244-250.         [ Links ]

Sturm, B., Nunez, V. A.-M., Hofacker, W. C. (2014). Influence of process control strategies on drying kinetics, colour and shrinkage of air dried apples. Applied Thermal Engineering 62, 455-460.         [ Links ]

Tarhan, S. (2007). Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures. Journal of Food Engineering 79, 255-260.         [ Links ]

Vagenas, G.K and Karathanos, V.T. (1993). Prediction of the effective moisture diffusivity in gelatinized food systems. Journal of Food Engineering 18, 159-179.         [ Links ]

Vásquez-Parra, J. E., Ochoa-Martínez, C.I., Bustos-Parra, M. (2013). Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering 119, 648-654.         [ Links ]

Vega, G.A., Miranda, M., Puente, L., Lopez, L., Rodriguez, K. (2010). Effective moisture diffusivity determination and mathematical modelling of drying curves of the olive-waste cake. Bioresource Technology 101, 7265-7270.         [ Links ]

Vega-Gálvez, A., Ah-Hen, K. Chacana, M., Vergara J., Martínez-Monzó, J., García-Segovia, P., Lemus-Mondaca, R., Di Scalae, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry 132, 51-59.         [ Links ]

Velázquez-Jiménez, Litza H., Pavlick, Andrea., Rangel-Mendez, J. Rene. (2013). Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Industrial Crops and Products 43, 200-206.         [ Links ]

Walde, S.G., Velu, V., Jyothirmayi, T., Math, R.G. (2006) . Effects of pretreatments and drying methods on dehydration of mushroom. Journal of Food Engineering 74, 108-115.         [ Links ]

Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G. (2007) . Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International 40, 39-46.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons