Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.10 no.1 Ciudad de México feb. 2012
Determination of Phase Transition by Principal Component Analysis Applied to Raman Spectra of Polycristalline BATIO3 at Low and High Temperature
E.V. MejíaUriarte*1, R.Y. SatoBerrú2, M. Navarrete3, O. Kolokoltsev4, J. M. Saniger5
1,4 Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAM, A.P. 70186, C.P. 04510, México D.F., México* elsi.mejia@ccadet.unam.mx
2,5 Laboratorio de sensores y nanotecnología, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAM, A.P. 70186, C.P. 04510, México D.F., México
3 Instituto de Ingeniería, Edif. 12 Bernardo Quintana, UNAM, CP 04510, CU, México D.F., México
ABSTRACT
This work describes the principal component analysis (PCA) applied to Raman spectra of polycrystalline BaTiO3 as a function of temperature. During each experiment the samples was continuously heated and the Raman spectrum was registered every 0.5 °C at a rate of 0.1 °C min1. This procedure is applied on samples BaTiO3 compact powder to obtain their thermal behavior from 190 °C to 230 °C. The PCA method was able to distinguish spectral features to determine the phase transition temperature and the whole thermal history including the structural phase transition from rhombohedra to orthorhombic at 100 °C, orthorhombic to tetragonal at 5 °C and tetragonal to cubic at 121 °C.
Keywords: Phase transitions, BaTiO3, principal component analysis.
RESUMEN
Este trabajo describe el análisis de las componentes principales (PCA) aplicados a los espectros Raman del BaTiO3 como función de la temperatura. Durante el experimento las muestras fueron calentadas continuamente y los espectros Raman fueron registrados cada 0.5 °C a una razón de 0.1 °C por minuto. Este procedimiento es aplicado para muestras de polvo compacto de BaTiO3 para obtener su comportamiento térmico de 190 °C a 230 °C. La técnica del PCA fue capaz de distinguir características espectrales para determinar la temperatura de la transición de fase y la historia térmica completa, incluyendo las transiciones de fase estructural: romboédrica a ortorrómbica at 100 °C, ortorrómbica a tetragonal at 5°C y tetragonal a cúbica at 121 °C.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] N. Baskaran, A. Ghule, Ch. Bhongale, R. Murugan and Hua Chang, Phase transformation studies of ceramic BaTiO3 using thermoRaman and dielectric constant measurements, Journal of Applied Physics, Vol. 91, Issue 12, June 2002, pp. 946110231. [ Links ]
[2] I. Hatta, Potentiality of an ac calorimetric method in the study of phase transitions, Thermochimica acta, 304/305, 1997, p.p. 2734. [ Links ]
[3] Y. Shiratori, C. Pitham, J. Dornseiffer and R. Waser, Raman scattering studies on nanocrystalline BaTiO3, Part I isolated particles and aggregates, J. Raman spectroscopy, Vol. 38, June 2007, p.p. 12881299 and Part II consolidated polycrystalline ceramics, J. Raman spectroscopy, Vol. 38, June 2007, p.p. 13001306. [ Links ]
[4] R.Y. SatoBerrú, E.V. MejíaUriarte, C. C. FraustoReyes, M. VillagránMuniz, MedinaGutiérrez, H. Murrieta S y J.M. SanigerBlesa. Applications of principal component analysis and Raman spectroscopy in the analysis of polycristalline BaTiO3 at high pressure, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66, N° 3, March 2006, p.p. 557. [ Links ]
[5] M. VillagránMuniz, M. Navarrete and E.V. MejíaUriarte, Photoacoustic determination of phase transition in BaTiO3 induced by high pressure at room temperature, Rev. Sci. Instrum. Vol. 74. No. 1, January 2003, pp. 732734. [ Links ]
[6] E.V. MejíaUriarte, M. Navarrete, M. VillagránMuniz, Signal processing in photoacoustic detection of phase transitions by means of the autospectra correlationbased method: Evaluation with ceramic BaTiO3, Rev. Sci. Instrum. Vol. 75, N° 9, September 2004, pp. 28872891. [ Links ]
[7] E. V. MejíaUriarte, R.Y. SatoBerrú, M. Navarrete M. VillagránMuniz, C. MedinaGutiérrez, C. FraustoReyes and H. Murrieta S. Phase transition of polycrystalline BaTiO3 at highpressure detected by a pulsed photoacustic technique, Measurement science and technology 17, N° 6, May 2006, p.p. 13191323. [ Links ]
[8] NIST/SEMATECH eHandbook of Statistical Methods: http://www.itl.nist.gov/div898/handbook, 2005. [ Links ]
[9] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, Inc., USA, 1999, p. 458. [ Links ]
[10] J.A. Falcon, K.A. Berglund, In situ monitoring of antisolvent addition crystallization with principal components analysis of Raman spectra, Crys. Growth Des. Vol. 4. 2004, p.p. 457463 (2004). [ Links ]
[11] A.G. Ryder, G.M. O'Connor, T.J. Glynn, Quantitative analysis of cocaine in solid mixtures using Raman spectroscopy and chemometric methods, J. Raman Spectrosc. 31, Vol. 221 No 3, March 2000, p.p. 21227. [ Links ]
Acknowledgements
This work is supported by NanoRed CONACYT grants No. 124580 and 124680. The authors would also like to thank PAPIIT (IN107509).