SciELO - Scientific Electronic Library Online

 
vol.41Análisis fisiológico y genético de una población de mapeo que responde a Azospirillum promotor del crecimiento vegetal en el trigoRol de Bacillus subtilis y dosis de fósforo en la concentración, distribución y absorción de macronutrientes en frijol común índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Terra Latinoamericana

versión On-line ISSN 2395-8030versión impresa ISSN 0187-5779

Terra Latinoam vol.41  Chapingo ene./dic. 2023  Epub 14-Ago-2023

https://doi.org/10.28940/terra.v41i0.1116 

Artículos científicos

Fertilidad edáfica y nutrición en el cultivo de cacao (Theobroma cacao L.) en tres suelos de Tabasco, México

Soil fertility and nutrition in cacao cultivation (Theobroma cacao L.) in three soils of Tabasco, Mexico

Sandra Patricia Francisco-Santiago1 
http://orcid.org/0000-0003-2066-3285

David Jesús Palma-López2   
http://orcid.org/0000-0002-9606-0379

Rufo Sánchez-Hernández3 
http://orcid.org/0000-0002-4385-4837

José Jesús Obrador-Olán2 
http://orcid.org/0000-0003-2233-3431

Pedro García-Alamilla3 
http://orcid.org/0000-0002-5325-1327

1Colegio de Postgraduados, Campus Tabasco, Estudiante de Maestría,

2 Profesor Investigador. Carretera Cárdenas-Huimanguillo km 3.5, Periférico Carlos A. Molina. 86500 Heroica Cárdenas, Tabasco, México.

3Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias. Carretera Villahermosa-Teapa km 25.1, Ranchería la Huasteca 2da sección. 86298, Villahermosa, Tabasco, México.


Resumen:

El cacao es un cultivo tradicional en el sur de México, que exhibe baja productividad debido a limitantes edáficas y de nutrición, por lo que el objetivo de la investigación fue diagnosticar la fertilidad edáfica y contenido nutrimental de las plantaciones de cacao, en los principales grupos de suelos cultivados en la Chontalpa, principal zona productora de Tabasco, para identificar las variables del suelo y nutrimentales que restringen la productividad del cultivo. Mediante análisis de imágenes satelitales, se seleccionaron sitios de muestreos en suelos representativos del área de estudio y se geoposicionaron las coordenadas para ubicarlos. Se describieron perfiles de suelos para clasificar los suelos de los sitios de estudio, y se colectaron muestras de suelos a las profundidades de 0-10, 10-30 y 30-50 cm, para determinar variables indicadoras de la fertilidad del suelo. En árboles productores se colectaron muestras foliares para determinar las concentraciones de macronutrientes. Los resultados indican que las plantaciones se cultivan sobre Vertisols, Cambisols y Fluvisols, que no presentan restricciones en la mayoría de las propiedades edáficas. Sin embargo, debido a la baja relación C/N (< 12) de los suelos, hay una disminución en los contenidos de MO y N, que se suman a un déficit de K, que provocan bajas concentraciones de ambos macronutrientes en el follaje de las plantas. Se concluye que las principales restricciones edáficas que pueden afectar al cultivo del cacao en la Chontalpa son la rápida pérdida de MO y déficit de N y K en el suelo, que provocan bajas concentraciones de ambos nutrientes en el follaje de los árboles.

Palabras clave: agroforestal; nutrición foliar; región Chontalpa; suelos tropicales

Summary:

Cocoa is a traditional crop in southern Mexico, although its productivity is low due to edaphic and nutritional limitations. Hence, the aim of our research was to diagnose edaphic fertility and the nutritional content of cacao plantations in the main groups of cultivated soils in La Chontalpa, the main cocoa production area of Tabasco state, to identify the edaphic and nutritional variables that restrict crop productivity. Through the analysis of satellite images, sampling sites were selected in representative soils of the study area and the coordinates were geopositioned to locate them. Soil profiles were described to classify the soils of the sampling sites. Soil samples were collected at depths of 0-10, 10-30 and 30-50 cm, to determine variables of soil fertility. In producer trees, foliar samples were collected to determine the concentrations of macronutrients. The results indicate that the plantations are cultivated on Vertisols, Cambisols and Fluvisols, which do not show restrictions in most of the edaphic properties. However, due to the low C/N ratio (< 12) of the soils, there is a decrease in the OM and N contents, which are added to a K deficit, causing low concentrations of both macronutrients in the foliage of the plants. In conclusion, the main edaphic restrictions that can affect cocoa cultivation in La Chontalpa are the rapid loss of OM and a deficit of N and K in the soil, which cause low concentrations of both nutrients in the foliage of the trees.

Index words: agroforestry; foliar nutrition; Chontalpa region; tropical soils

Introducción

El cultivo de cacao (Theobroma cacao L.) es uno de los cultivos comerciales de exportación más importantes en las regiones tropicales (Bai et al., 2017). México ocupa el decimotercer lugar en la producción de cacao a nivel mundial (FAOSTAT, 2021). Por su parte, los cacaotales son considerados sistemas agroforestales (SAF-cacao) que contribuyen a la conservación de una cubierta arbórea formada por árboles de cacao y de sombra (Sánchez-Gutiérrez, Pérez, Obrador, Sánchez y Ruiz, 2016; Salvador-Morales, Cámara, Martínez, Sánchez y Valdés, 2019) y son considerados los recursos agrícolas y culturales más importantes del trópico húmedo mexicano (Díaz-José, Aguilar, Rendón y Santoyo, 2013).

El estado de Tabasco es el principal productor de cacao a nivel nacional, la cual se produce bajo un sistema de cultivo tradicional conservacionista, generando el 73% de la producción nacional de cacao (De la Cruz-Landero, Córdova, García, Bucio y Jaramillo, 2015), es considerado el segundo cultivo más importante del estado, con 40 923 ha, distribuidas principalmente en la subregión de la Chontalpa, en los municipios de Cárdenas, Comalcalco y Cunduacán (SIAP, 2021). A esta actividad productiva se dedican en su mayor parte pequeños productores quienes dependen de ella para su sustento económico (Ramírez-González et al., 2008). Por su parte, los factores edafoclimáticos, influyen en el desarrollo y crecimiento del cultivo de cacao (Almeida y Valle, 2007; Suárez, Florido, Soto y Caballero, 2013); requieren un rango de temperatura de entre 15 y 32 °C (óptimo de 25 °C), precipitación anual de entre 1500 y 3000 mm, suelos de origen aluvial, profundos, ricos en materia orgánica, texturas francas a arcillosas, pH de 6 a 7 (óptimo de 6.5) y bien drenados (Prabhakaran-Nair, 2010; López-Báez et al., 2015, Arvelo-Sánchez, González, Maroto, Delgado y Montoya, 2017).

La subregión Chontalpa posee las condiciones climáticas adecuadas para el ciclo fenológico del cacao, debido a que la temperatura promedio es de 26 °C con una precipitación anual de 2500 mm (Pérez-Sosa y Granados-Ramírez, 2020), además de que, las plantaciones se encuentran establecidas principalmente en suelos de origen aluvial como Fluvisoles, Cambisoles y Vertisoles (Palma-López et al., 2010), que poseen una buena fertilidad, debido a que son suelos profundos, con texturas que van desde medias a arcillosas y altos contenidos de materia orgánica (Palma-López et al., 2017; Salvador-Morales et al., 2019).

Para determinar la fertilidad del suelo, se emplean diversos análisis químicos que permiten cuantificar las variables que fijan los niveles de dicha fertilidad edáfica, lo que permite advertir los efectos que tienen sobre el abastecimiento de los elementos esenciales del cultivo, para corregir deficiencias e implementar estrategias para incrementar la productividad en los cultivos (Etchevers, 1999; Schroeder, López y Martínez, 2005; Garbanzo-León, Alemán, Alvarado y Henríquez, 2017; Marrocos et al., 2020).

Existen numerosos estudios a nivel internacional sobre la fertilidad edáfica de las plantaciones de cacao (Salvador-Morales et al., 2017; Aleixo, Gama, Gama y Schripsema, 2019), de concentraciones foliares (Puentes-Páramo, Menjivar y Aranzazu, 2016; Marrocos et al., 2020) y de investigaciones que relacionan ambos aspectos (Quintino, Guilherme, Ahnert, Escalona y Baligar, 2020; Dogbatse et al., 2020). Debido a que Tabasco es el principal productor de cacao a nivel nacional, se requiere integrar el conocimiento sobre la fertilidad edáfica y contenido nutrimental de las plantaciones de cacao establecidas, con la finalidad de contar con información para el manejo de la nutrición del cultivo. Es por ello que el objetivo del siguiente trabajo fue determinar la fertilidad edáfica y contenido nutrimental foliar en las plantaciones de cacao en los tres principales grupos de suelos ubicados en la Chontalpa, Tabasco.

Materiales y Métodos

Selección de sitios de muestreo

Con base en la cartografía de suelos de Tabasco (Palma-López et al., 2010; Palma-López et al., 2017), se identificaron los diferentes grupos de suelos ubicados en la subregión Chontalpa. Posteriormente se realizaron recorridos de campo, con el fin de seleccionar sitios de estudios por grupo de suelo, por lo que mediante barrenaciones de hasta 1.50 m de profundidad, se corroboró que los sitios se ubicaran en unidades pedológicas diferentes. Después de confirmar lo anterior, se seleccionaron tres sitios de estudio (uno por grupo de suelo), con los siguientes criterios: plantaciones de cacao Guayaquil, edad similar de 40 años, con una superficie mínima de 2 hectáreas y manejo agronómico similar, con énfasis en que no hubieran recibido fertilización, ni riego suplementario.

Ubicación de los sitios de estudio

Los sitios de estudios se ubican en los municipios de Cárdenas (18° 08’ 34.51” N; 93° 29’ 27.22” O), Comalcalco (17° 25’ 41.63” N; 93° 30’ 59.56” O) y Cunduacán (18° 09’ 21.17” N; 93° 15’ 29.02” O) (Figura 1). El clima predominante de la subregión es cálido húmedo con abundantes lluvias en verano, precipitación media anual de 2500 mm y una temperatura media anual de 26 °C (Pérez-Sosa y Granados-Ramírez, 2020). De acuerdo con la taxonomía de suelos (Soil Survey Staff, 2014), los suelos estudiados presentan un régimen de humedad edáfica Údico y un régimen de temperatura Isohipertérmico.

Figura 1: Localización de los sitios de estudio en la Chontalpa, Tabasco, México.  

Figure 1: Location of the study sites in La Chontalpa, Tabasco, Mexico. 

Descripción taxonómica y caracterización de unidades pedológicas

En cada sitio de estudio, se realizó una calicata de 1.50 m de profundidad y se describieron los perfiles de suelos de acuerdo a Cuanalo (1981). Posterior a su descripción en campo, en cada horizonte del perfil, se obtuvieron muestras de suelo, las cuales se les practicaron análisis físicos y químicos de acuerdo a lo estipulado en la NOM-021-SEMARNAT-2000 para clasificación de suelos (NOM-021-SEMARNAT-2000, 2002). A partir de la descripción de perfiles y de los resultados de los análisis físicos y químicos, se clasificaron hasta el segundo nivel categórico, identificando el grupo de suelo y los calificadores principales y suplementarios de acuerdo a las reglas de la Base Referencial Mundial del Recurso Suelo (IUSS, 2015). Los análisis físicos y químicos se realizaron en el Colegio de Postgraduados, Campus Tabasco.

Diagnóstico nutrimental del suelo

El muestreo de suelos se realizó en época de secas, específicamente en el mes de marzo de 2020. En cada sitio de estudio, se delimitó una hectárea, que fue subdividida en cuatro cuadrantes (2500 m2 cuadrante-1) y se seleccionaron de manera aleatoria 5 árboles de cacao por cuadrante, cada árbol fue considerado como unidad experimental, por lo tanto, en cada sitio de estudio contempló un total de 20 árboles. Los muestreos de suelo se realizaron con barrena holandesa, en los cuatro puntos cardinales respecto a la base del árbol, a una distancia de 1 m, dentro de la zona de goteo (área de influencia de la fronda de cada árbol) de los árboles seleccionados. Se tomaron submuestras de suelos a tres profundidades: 0-10 cm, 10-30 cm y 30-50 cm sin considerar la profundidad de los horizontes del perfil, dado que se buscó muestrear a profundidades con mayor influencia de la actividad orgánica del suelo. Cada grupo de submuestras, se mezclaron para obtener una muestra compuesta. En dichas muestras se realizaron los siguientes análisis físicos y químicos: potencial de Hidrógeno (pH; potenciómetro, medido en relación suelo-agua 1:2), materia orgánica (MO; método de combustión húmeda de Walkley y Black); nitrógeno total (N; digestión en Microkjeldahl); fósforo asimilable (P; método Olsen); capacidad de intercambio catiónico (CIC; extracción en acetato de amonio pH 7) y bases intercambiables Ca+2, Mg+2, K+ y Na+ (extracción en acetato de amonio pH 7 y lectura por absorción atómica) con base en lo establecido en la NOM-021-SEMARNAT-2000 (NOM-021-SEMARNAT-2000, 2002).

Diagnóstico nutrimental de tejidos foliares

El muestreo foliar en los árboles seleccionados en cada unidad experimental, se realizó en la misma época que el muestreo para el diagnóstico nutrimental de los suelos (marzo 2020), justo en la etapa de producción de dichos árboles. Se muestrearon 20 hojas del estrato medio de las copas, sin daños visibles (cinco hojas por cada punto cardinal). La hoja seleccionada fue la numero cuatro, de las recientemente maduras, obtenidas a partir de la punta del ápice hacia adentro (Reetz, 2016). Las hojas fueron almacenadas en bolsas de papel estraza para posteriormente trasladarse al área de procesamiento de muestras del Colegio de Postgraduados Campus Tabasco, en donde las hojas se lavaron con agua destilada, se secaron al aire y se ingresaron a una estufa de aire forzado a 60 °C hasta peso constante (72 h aproximadamente). Posteriormente, se molieron y tamizaron con un tamiz #20 malla de 1 mm. Los análisis realizados fueron N (método de Semimicro-Kjeldahl); P (colorimetría de luz visible con molibdato de amonio); Potasio (K), Calcio (Ca), Magnesio (Mg) y Sodio (Na) por espectrofotometría de absorción atómica (Álvarez y Marín, 2011).

Tanto los análisis de suelos como foliares para el diagnóstico nutrimental, se llevaron a cabo en el Laboratorio de Suelos y Plantas del Centro de Investigación de Ciencias Agropecuarias de la Universidad Juárez Autónoma de Tabasco.

Diseño y análisis estadísticos

El diseño experimental utilizado fue un diseño completamente al azar. Con los datos obtenidos se realizaron análisis de varianzas (ANOVA) y prueba de comparación de medias de Tuckey con un nivel de significancia del P ≤ 0.05, mediante el paquete estadístico Statistica (Statsoft, 2011).

Resultados y Discusión

Clasificación de los suelos

De acuerdo con la descripción y análisis físicos y químicos de los horizontes de los perfiles de suelo y con base en la base referencial del recurso suelo, los suelos cultivados con cacao en la subregión de la Chontalpa Tabasco se clasifican como: Haplic Vertisol (Hypereutric, Gleyic) para el Sitio 1 (VR); Eutric Gleyic Cambisol (Clayic) para el Sitio 2 (CM); y Gleyic Eutric Fluvisol (Loamic) para el Sitio 3 (FL) (Anexos 1 y 2). Estos suelos por su origen a partir de aluviones recientes son aptos para el cultivo, ya que se tratan de suelos profundos, ricos en MO, con adecuados niveles en sus propiedades químicas, y con excepción de los VR, presentan texturas de medias a finas, adecuadas para el buen desarrollo de las plantas (Bojórquez et al., 2007; Sotelo, Gutiérrez, Cruz, Ortiz y Segura 2008; López-Castañeda et al., 2017; Palma-López et al., 2017).

Caracterización de la fertilidad edáfica de los suelos del saf-cacao

Como se puede observar en el Cuadro 1, en los suelos CM y FL, las mayores concentraciones de MO se encuentran en los primeros 10 cm de profundidad, a diferencia de los VR, los cuales presentan contenidos de MO similares dentro de una capa más profunda, que va desde la superficie hasta los 50 cm. Estos resultados concuerdan con lo reportado por Brito-Vega, Salaya, Gómez, Gómez y Antele (2018), quienes señalan que los suelos cultivados con cacao, que son más arcillosos tienen mayor capacidad para proteger la MO. La MO, se considera como una de las principales variables edáficas para definir la fertilidad del suelo, ya que favorece la fertilidad física, al reducir la densidad aparente, y aumentar la tasa de infiltración; la química, al suministrar nutrientes, y la biológica, al incrementar la actividad microbiana (Martínez, Fuentes y Acevedo, 2008; Cantú-Silva y Yáñez-Díaz, 2018).

Cuadro 1: Concentraciones de materia orgánica (MO), carbono orgánico (CO), nitrógeno total (Nt) y relación C/N de los tres sitios de estudio a tres profundidades en La Chontalpa, Tabasco, México. 

Table 1: Concentrations of organic matter (MO), organic carbon (CO), total nitrogen (Nt) and C/N relationship of the three study sites at three depths in La Chontalpa, Tabasco, Mexico. 

Sitios Profundidad Variables
MO CO Nt Relación C/N
cm - - - - - - - - - - - - cg kg-1 - - - - - - - - - -
VR 0-10 4.50±0.69a 2.61±0.40a 0.23±0.03a 11.26±0.98a
CM 4.57±0.79a 2.65±0.46a 0.23±0.03a 11.47±0.73a
FL 3.20±0.88b 1.86±0.51b 0.17±0.04b 10.65±0.76b
VR 10-30 2.81±0.58a 1.63±0.34a 0.16±0.03a 10.42±1.21a
CM 2.02±0.33b 1.17±0.19b 0.13±0.01b 9.21±0.90b
FL 1.66±0.67b 0.96±0.39bb 0.11±0.03b 8.53±2.36b
VR 30-50 1.60±0.44a 0.93±0.25a 0.10±0.04a 9.53±1.42a
CM 1.18±0.20b 0.69±0.12b 0.08±0.01b 8.52±0.99b
FL 0.87±0.27c 0.51±0.15c 0.06±0.02c 8.24±1.57b

Letras distintas indican diferencias estadísticas significativas (P ≤ 0.05).

Different letters indicate statistically significant differences (P ≤ 0.05).

De acuerdo con Rasmussen et al. (2018), las arcillas exhiben una mayor área superficial específica y generalmente presentan una carga permanente, que le confieren la capacidad de estabilizar mayor cantidad de MO, ya sea de manera directa mediante la adsorción de los compuestos orgánicos a la superficie de las arcillas, o indirectamente mediante la formación de estructuras más estables. Otros estudios han señalado que, los suelos de los sistemas agroforestales de cacao en la Chontalpa Tabasco, registran niveles de MO medios y altos de Nt, con valores de 2.12 y 0.18%, respectivamente, entre 0-30 cm de profundidad, sin embargo, después de 30 cm, los niveles de ambas variables bajan a 0.80 y 0.09% de MO y Nt, respectivamente, que los ubican como niveles bajos en ambos casos (Pascual-Cordova et al., 2017). Esos niveles de MO bajos, pueden ser producto de una rápida descomposición de los residuos orgánicos que se integran al suelo a través de la hojarasca. Los resultados que se indican en el Cuadro 1, reflejan una relación C/N menor a 12, en todos los suelos y profundidades, misma que se acentúa a mayor profundidad, estas relaciones C/N tan bajas predisponen una rápida mineralización, que por un lado liberan nutrientes disponibles para las plantas, pero, por otro lado, agotan las reservas orgánicas e influencian la calidad de los productos húmicos finales (Gallardo-Lancho, 2016). Debido a esta influencia que ejerce la relación C/N sobre la velocidad de descomposición de la MO, este parámetro se considera un indicador de la tasa de mineralización o inmovilización del N; valores altos de C/N indican que la MO se descompone lentamente, provocando inmovilización neta del N, en tanto que, una relación C/N < 15, indica una óptima descomposición de la MO (Soto-Mora, Hernández, Luna, Ortiz y García, 2016; Gamarra-Lezcano, Díaz, Vera, Galeano y Cabrera, 2018).

Uno de los productos de esa rápida mineralización a la que se alude en el párrafo anterior, es el nitrógeno, un elemento altamente demandado por las plantas de cacao (Furcal-Beriguete, 2017). Como se observa en el Cuadro 1, las variables MO, Nt y la relación C/N guardan una estrecha relación, esto se debe a que el N junto con el C, son los principales constituyentes de la MO. Como se puede apreciar el suelo VR presentó contenidos altos de N en sus tres profundidades, el CM alto para la primera y medios para las dos siguientes profundidades, mientras que en el FL es medio para la primera, y bajos para la segunda y tercera profundidad respectivamente (NOM-021-SEMARNAT-2000, 2002). Debido a la deforestación de la vegetación original en Tabasco existen pocos datos sobre la relación C/N en suelos sin cultivo, Ribón-Carrillo, Salgado, Palma y Lagunes (2003), refieren que en un Vertisol con selva mediana perennifolia se encontró un C/N de 11.3, cercano a los valores obtenidos en los Vertisoles con cultivo de cacao. En un trabajo realizado en la misma zona Sulçe, Palma, Jacquin, Vong y Guiraud (1996) encontraron en la capa arable un C/N de 9.9 y 9.3 para un Vertisol y un Fluvisol, respectivamente, recién desmontados de vegetación secundaria y recién sembrados con maíz, lo cual nos indica que los C/N de los VR y FL están ligeramente arriba de estos datos. La distribución del N en las diferentes capas del suelo revela que esas concentraciones de N provienen de la descomposición de la MO, por lo que, al disminuir la reserva orgánica, el N disminuye notoriamente.

Justo debido a que el N es un nutriente que se pierde rápidamente, independientemente de que los suelos puedan recibir aportes importantes de MO, el suministro de fertilizantes nitrogenados puede beneficiar la nutrición de las plantaciones, ya que los fertilizantes ponen a disposición de forma rápida N inorgánico al suelo, además de incrementar la velocidad de descomposición de los residuos orgánicos (Mulia et al., 2017; Dogbatse et al., 2021).

Stevenson (1994) señala que, bajo condiciones templadas, solamente un tercio del C y N que entran al suelo a través de los residuos orgánicos, pueden permanecer como MO después de un año, a menos que haya factores edáficos extremos que restrinjan la actividad biológica. Si se toma en cuenta, que la precipitación y la temperatura son factores climáticos que aceleran la velocidad de la descomposición, es de esperarse que, en ambientes cálidos y húmedos como es el caso de la Chontalpa Tabasco, la cantidad de MO disminuya drásticamente (Gallardo-Lancho, 2016), y con ello una liberación de N, que al paso del tiempo es lixiviado, debido a que el N orgánico se transforma en N amoniacal (NH4 +) y nitrato (NO3 -), que son las formas asimilables para las plantas, aunque muy móviles y fácilmente lixiviadas (Sulçe et al., 1996; Celaya-Michel y Castellanos-Villegas, 2011).

Otro indicador importante para definir los niveles de fertilidad edáfica es el pH. En el Cuadro 2, se puede observar que los pH son moderadamente ácidos en todos los suelos y profundidades (Cuadro 2), (NOM-021-SEMARNAT-2000, 2002). El pH de los suelos tropicales suele ser una de las restricciones más importantes para la producción de los cultivos (Ribeiro et al., 2013), no obstante, valores por encima de 5.5 suelen ser óptimos para el buen crecimiento y desarrollo del cacao (Van Vliet, Maja y Kent, 2015). Solo el FL presentó diferencias estadísticas significativas entre profundidades, resaltando que la capa de 30-50 cm es ligeramente más ácida que las capas superficiales; sin embargo, en ningún caso, los valores de pH se pueden considerar como restrictivos para el cultivo de cacao.

Cuadro 2: Propiedades químicas en tres diferentes grupos de suelo a tres profundidades en plantaciones de cacao de La Chontalpa, Tabasco, México. 

Table 2: Chemical properties in three different soil groups at three depths in cocoa plantations in La Chontalpa, Tabasco, Mexico. 

Sitios Profundidad Variables
pH P Ca2+ Mg2+ K+ Na+ CIC
cm mg kg-1 - - - - - - - - - - - - - - cmol (+) kg-1 - - - - - - - - - - - - - -
VR 0-10 6.26±0.23a 23.97±7.36b 20.01±1.97a 9.00±1.46a 0.85±0.16a 0.32±0.18a 33.28±1.82a
CM 6.21±0.33a 46.02±32.89a 17.83±3.27b 5.23±0.64b 0.40±0.10b 0.24±0.11ab 26.81±3.20b
FL 6.24±0.44a 38.38±19.89ab 12.16±2.83c 3.68±0.57c 0.75±0.22a 0.20±0.12b 19.44±3.66c
VR 10-30 6.19±0.27a 18.58±7.37b 18.69±1.76a 9.16±1.24a 0.70±0.16a 0.32±0.17a 32.14±1.69a
CM 6.02±0.37a 42.85±36.18a 15.50±3.83b 4.41±0.62b 0.36±0.10b 0.25±0.10ab 23.96±3.80b
FL 5.87±0.51a 34.62±27.55ab 9.61±2.12c 3.46±0.65c 0.62±0.21a 0.18±0.09b 17.68±3.84c
VR 30-50 6.19±0.26a 15.64±6.53b 18.60±1.70a 9.61±1.33a 0.64±0.17a 0.36±0.19a 31.79±1.84a
CM 6.23±0.50a 38.53±31.86a 15.32±3.91b 4.56±0.59b 0.35±0.09c 0.29±0.11ab 23.01±3.48b
FL 5.69±0.27b 21.66±18.58ab 8.44±1.49c 3.91±0.93b 0.48±0.19b 0.18±0.11b 17.29±3.93c

Letras distintas indican diferencias estadísticas significativas (P ≤ 0.05).

Different letters indicate statistically significant differences (P ≤ 0.05).

En el caso del P, las deficiencias suelen ser comunes en los suelos agrícolas (Balemi y Negisho, 2012; Zhu, Li y Whelan, 2018). Sin embargo, los niveles detectados en esta investigación se consideran altos (NOM-021-SEMARNAT-2000, 2002), probablemente debido a la relación beneficiosa que existe entre el cacao y los árboles de sombra, en donde el ciclo de nutrientes se ve mejorado por los aportes de la hojarasca (Isaac, Timmer y Quashie-Sam, 2007). Se observa que, en todos los sitios estudiados hubo una disminución del P conforme aumentó la profundidad (Cuadro 2).

De manera general, la mayor concentración de P se ubica en la capa superficial de 0-10 cm, asociados probablemente a la liberación de iones PO4 - producto de la mineralización de la MO, en particular, en los CM y FL que presentaron contenidos más altos. Cabe mencionar, que los valores de P obtenidos en esta investigación, son más altos que los encontrados en otros estudios realizados en plantaciones de cacao en la zona de estudio, que fueron de 8.15 mg kg-1 y de 5.35 mg kg-1 en la superficie (López, López de Rojas, España, Izquierdo y Herrera, 2007; Pascual-Cordova et al., 2017). De acuerdo a Ruttenberg (2003), en ecosistemas naturales, las mayores fuentes de P provienen de la mineralización de rocas ricas en P que, al meteorizarse, se descomponen y liberan los fosfatos. Estos son traslocados a las plantas y posteriormente a los animales a través de la ingesta, para regresar al suelo a través de excretas, que al ser atacadas por los microorganismos se convierte en ortofosfatos, los cuales son aprovechados por las plantas para formar fosfato orgánico (biomasa vegetal), y de nueva cuenta regresar al suelo después del proceso de mineralización.

Los contenidos de Ca2+, Mg2+, K+ y Na+, presentaron diferencias significativas en todos los suelos (Cuadro 2). De manera general, el VR fue el que presentó mayor concentración de cationes intercambiables. Para el caso del Ca2+, se observan diferencias significativas entre suelos y profundidades, el orden en que se presentaron las concentraciones de Ca2+ en los sitios estudiados fue, Vertisol>Cambisol>Fluvisol. De acuerdo a NOM-021-SEMARNAT-2000 (2002), en todas las profundidades se encontraron valores altos de Ca2+ con excepción de la profundidad de 30-50 cm del CM y FL que mostraron contenidos medios. El Ca2+ es un elemento que se encuentra comúnmente en concentraciones altas y medias en los suelos con plantaciones de cacao (Nelson et al., 2011; Pascual-Cordova et al., 2017; Singh, Sanderson, Field, Fidelis y Yinil, 2019), las razones pueden ser diversas, los suelos estudiados son aluviales de origen, con contenidos importantes de Ca y las otras bases de intercambio (Palma-López et al., 2017), además el Ca2+ es un nutriente que no se exporta en altas cantidades en el rendimiento de cacao (Reetz, 2016), también el bombeo de nutrientes que hacen los árboles de sombra en el sistema agroforestal cacao, favorece el aporte de nutrientes en la superficie del suelo (Isaac y Borden, 2019). El Mg2+ en todas las profundidades presentó altas concentraciones (NOM-021-SEMARNAT-2000, 2002), la razón puede deberse a lo explicado para el Ca2+. El aporte de Mg por la hojarasca de los árboles de sombra es de alrededor de 10 kg ha-1 año-1 (Báez-Daza, 20181), que es superior a las cantidades que exporta el rendimiento de una tonelada de cacao, que es de alrededor de 4 kg ha-1 año-1 (Furcal-Beriguete, 2017). Conforme incrementó la profundidad de los suelos estudiados disminuyeron las concentraciones de Mg, casi en todos los casos hubo diferencias estadísticas significativas entre las profundidades de cada unidad de suelos, excepto para el FL en el que la profundidad dos y tres fueron estadísticamente iguales.

El nutriente K+ en casi todas las unidades de suelo estudiadas presentó valores altos en la primera y tercera profundidad, teniendo valores medios en la segunda profundidad (NOM-021-SEMARNAT-2000, 2002). La primera y tercera profundidades de las unidades de suelos VR y CM fueron estadísticamente similares (Cuadro 2) y con contenidos altos, el FL presentó valores altos en la primera profundidad y medios para la segunda y tercera (NOM-021-SEMARNAT-2000, 2002). El K es el elemento nutriente que más demanda el cacao, oscila entre los 50 y 80 kg ha-1año-1, la cascarilla es la parte que más exporta a este elemento (Reetz, 2016; Furcal-Beriguete, 2017), esto probablemente sea una de las razones por la que los suelos cacaoteros de Tabasco han disminuido gradualmente sus contenidos, ya que ésta no se reincorpora al sistema por su potencial de causar enfermedades fungosas y por el desconocimiento de sus propiedades y características benéficas (Pascual-Cordova et al., 2017; Castillo, Alvarez y Contreras, 2018). Los cationes no se retienen con la misma intensidad en el complejo arcillo-húmico, por lo que, tanto la cantidad como el tipo de catión que puede retener el suelo depende de sus propiedades físicas, químicas y mineralógicas, debido a la serie liotrópica, en la cual el Ca2+ es el catión que se encuentra en mayor proporción en el suelo, seguido del Mg2+, K+ y Na+, esto debido a las valencias que posee cada elemento; este último es poco retenido, por lo que tiende a lixiviarse (Sadeghian y Zapata, 2015; Corona-Rodríguez, 2019; Cepeda-Ureña, 2020). Todos los elementos nutrientes de los suelos estudiados presentaron contenidos suficientes para el óptimo rendimiento de las plantaciones estudiadas (Van Vliet, Maja y Kent, 2015), sin embargo, por su importancia, es necesario dar seguimiento a la dinámica del K en los sistemas agroforestales del estado.

La CIC de los tres estratos de profundidad se diferencian estadísticamente entre los sitios de estudio, observándose una disminución de los valores conforme el aumento de la profundidad. Para el suelo VR, los niveles de CIC fueron altos (>30 cmol (+) kg-1) en todas las profundidades; para el CM, la primera profundidad se clasificó como alta y media para la segunda y tercera profundidad. En el FL las tres profundidades se clasificaron como medias (Cuadro 2), (NOM-021-SEMARNAT-2000, 2002). El sistema agroforestal cacao favorece la acumulación de residuos, los cuales, al mineralizarse gradualmente favorecen el incremento de la CIC, parámetro que se relaciona fuertemente con la retención de las bases de intercambio (Salvador-Morales et al., 2017; Jagoret et al., 2019). De acuerdo con Sharma (2011), la rápida oxidación de la MO provoca la pérdida de los reservorios nutrimentales del suelo, por lo que la adopción o conservación de sistemas diversificados de uso de la tierra como agroforestería, agrihorticultura o agrosilvicultura, como es el caso del cacao, permiten mantener una importante calidad del suelo. Hay que resaltar que estos suelos provienen de aluviones del Reciente con arcillas tipo Montmorillonita por lo que su CIC y saturación de bases es de medio a alto, aunque el sitio ya no recibe aportaciones aluviales debido a la protección del cauce, por lo que la sustitución de bases es bajo y con el tiempo se espera que haya una acidificación del suelo (Palma-López et al., 2017).

Diagnóstico nutrimental de tejidos foliares

Los resultados de los análisis foliares indican que la mayoría de los sitios evaluados, presentan niveles ligeramente óptimos en cuanto a los contenidos de N, P, Ca y Mg; deficitarios en K, con excepción del suelo VR, el cual presenta un nivel ligeramente óptimo. En todos los sitios, el Na se presenta en contenidos inferiores a los niveles críticos para este cultivo (Cuadro 3).

Cuadro 3: Concentraciones de nutrientes (g kg-1) en el follaje de árboles cultivados en suelos de La Chontalpa, Tabasco. 

Table 3: Nutrient concentrations (g kg-1) in the foliage of trees grown in soils of La Chontalpa, Tabasco. 

Sitios N P K Ca Mg Na
- - - - - - - - - - - - - - - - - - - - - - - - - g kg-1 - - - - - - - - - - - - - - - - - - - - - - - - -
VR 19.0±2.6a 2.4±0.1b 26.4±1.6a 10.2±1.9b 7.3±1.1a 1.1±0.1c
CM 17.2±1.3b 2.4±0.3b 12.0±1.9c 11.5±1.7a 6.7±0.6a 2.0±0.3ab
FL 17.4±1.3b 3.3±0.5a 14.3±1.5b 10.1±1.7b 4.5±0.6b 1.8±0.3b

Letras distintas indican diferencias estadísticas significativas (P ≤ 0.05).

Different letters indicate statistically significant differences (P ≤ 0.05).

Según White y Brown (2010) el nivel óptimo de N en la materia seca foliar en el cultivo de cacao, se ubica entre 15 y 40 g kg-1. Como se puede observar, todos los sitios evaluados superan el nivel crítico mínimo de 15 g kg-1. Sin embargo, estos niveles son apenas superiores a dicho nivel, por lo que, en alguna época del año, esos niveles podrían ser deficitarios, ya que este nutriente es regulado por el régimen de pluviometría que se presentan en las diferentes épocas del año (Mengel y Kirkby, 2000).

De acuerdo con Jones, Wolf y Mills (1991)), los niveles bajos de K se encuentran entre 10-12.9 g kg-1, suficientes entre 13-22 g kg-1 y altos > 22 g kg-1, por lo que, como se puede observar en el Cuadro 3, los árboles establecidos en el suelo CM son deficitarios en este nutriente, los del FL son suficientes, y solamente los del suelo VR son altos.

Otra razón por la que el N y otros nutrientes como el K pueden ser deficitarios, es que ambos elementos son los que más requieren los árboles de cacao para producir (Salgado-García et al. 2013), una situación que se combina con la susceptibilidad de que el N mineral, proveniente de la mineralización de la MO se lixivie, mientras que, en el caso del K, se trata del elemento que más se exporta a través de la cosecha, en particular a través de las acumulaciones de nutrientes que ocurren en la cascara de la baya o mazorca.

Se puede observar que los árboles de todos los sitios de muestreo superan el nivel crítico de 2 g kg-1 (Aikpokpodion, 2010). Sin embargo, de acuerdo con Bouma (1967) el P presenta una alta variabilidad en la planta, por lo que las concentraciones de fosfatos son altamente variables entre las hojas viejas y nuevas; por su parte Mengel y Kirkby (2000) señalan que la concentración de P depende también del estado fenológico (inicio de botón floral y floración) etapa crítica en cual la planta requiere un mayor suministro de P (Aburto-González, Alejo, Ramírez y Sánchez, 2017).

El Ca y el Mg presentan niveles de suficiencia cuando superan 5 g kg-1 en tejidos foliares de cacao (Mengel y Kirkby, 2000; Jones, Wolf y Mills, 1991). En el Cuadro 3, se observa que ambos nutrientes rebasan dicho nivel crítico, excepto en el FL que apenas registró un nivel de 4.5 g kg-1. Aunque el Na no es considerado un nutriente en el cultivo de cacao, sus niveles de concentración juegan un papel importante en la nutrición vegetal, según White y Brown (2010) el nivel crítico de Na es de más de 2 g kg-1, un nivel que no se supera en los árboles en ninguno de los suelos evaluados.

Conclusiones

El cultivo de cacao en la Chontalpa Tabasco, se establece sobre Vertisol, Cambisol y Fluvisol, que generalmente no presentan restricciones edáficas para el cultivo. Sin embargo, estos suelos presentan relaciones C/N < 12, hasta los 50 cm de profundidad, que conducen a una rápida pérdida de materia orgánica y nitrógeno, que hacen de este elemento junto con el potasio, los dos macronutrientes más limitantes para el desarrollo de las plantaciones. Las concentraciones de macronutrientes en el follaje de los árboles de cacao son ligeramente óptimas, excepto en el caso del K, el cual fue deficiente en la mayoría de los sitios evaluados excepto en el Vertisol. El Vertisol presentó algunas ventajas sobre el Cambisol y Fluvisol en cuanto a sus propiedades edáficas, lo que le confiere una pequeña superioridad, con respecto al suministro de nutrientes.

Declaración de Ética

No aplicable.

Consentimiento para Publicación

No aplicable.

Disponibilidad de Datos

Los conjuntos de datos generados o analizados durante el estudio actual no están disponibles públicamente debido al tamaño de los datos recabados en campo y por consecuente en laboratorio, pero están disponibles del autor correspondiente a solicitud razonable.

Conflicto de Intereses

Los autores declaran que no tienen intereses en competencia.

Fondos

Los fondos utilizados para esta investigación fueron a través del Consejo Nacional de Ciencia y Tecnología (CONACYT).

Contribución de los Autores

Conceptualización: S.P.F.S., y D.J.P.L. Metodología: S.P.F.S., D.J.P.L., y R.S.H. Software: S.P.F.S., y J.J.O.O. Validación: P.F.S., D.J.P.L., y P.G.A. Análisis formal: S.P.F.S., D.J.P.L., y J.J.O.O., Investigación: S.P.F.S., D.J.P.L., y R.S.H. Escritura: preparación del borrador original, S.P.F.S., y D.J.P.L. Escritura: revisión y edición, S.P.F.S., D.J.P.L., R.S.H., J.J.O.O., y P.G.A. Supervisión: D.J.P.L. Administración del proyecto: S.P.F.S., y D.J.P.L. Adquisición de fondos: D.J.P.L.

Agradecimientos

Este artículo forma parte del proyecto de tesis de maestría del primer autor y es titulada “Relación entre suelos, nutrimentos y calidad del cacao en Tabasco”. Se agradece al Colegio de Postgraduados Campus Tabasco por el apoyo y la oportunidad de realizar los estudios de maestría, al CONACYT por la beca otorgada y a todos los productores de cacao que nos brindaron el acceso a sus plantaciones, y nos proporcionaron información valiosa para el desarrollo de la presente investigación.

Literatura Citada

Aburto-González, C. A., Alejo-Santiago, G., Ramírez-Guerrero, L. G., & Sánchez-Hernández, R. (2017). Concentración foliar de macronutrientes en diferentes etapas fenológicas del litchi cv. Brewster. Interciencia, 42(7), 441-445. [ Links ]

Aikpokpodion, P. E. (2010). Nutrients dynamics in cocoa soils, leaf and beans in Ondo State, Nigeria. Journal of Agricultural Science, 1(1), 1-9. https://doi.org/10.1080/09766898.2010.11884647 [ Links ]

Aleixo, S., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., & Schripsema, J. (2019). Organic phosphorus of soils under cacao agroforests in the Atlantic coast of Brazil. Geoderma Regional, 17, 1-9. [ Links ]

Almeida, A. A. F., & Valle, R. R. (2007). Ecophysiology of the cacao tree.Brazilian Journal of Plant Physiology , 19(4), 425-448. https://doi.org/10.1590/S1677-04202007000400011 [ Links ]

Álvarez-Sánchez, M. E., & Marín-Campos, A. (2011). Manual de procedimientos analíticos para suelo y planta. México: Universidad Autónoma de Chapingo. [ Links ]

Arvelo- Sánchez, M. A., González-León, D., Maroto-Arce, S., Delgado-López, T., & Montoya-Rodríguez, P. (2017). Manual técnico del cultivo de cacao: prácticas latinoamericanas. San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura. ISBN: 978-92-9248-732-4 [ Links ]

Bai, S. H., Trueman, S. J., Nevenimo, T., Hannet, G., Bapiwai, P., Poienou, M., & Wallace, H. M. (2017). Effects of shade-tree species and spacing on soil and leaf nutrient concentrations in cocoa plantations at 8 years after establishment. Agriculture, Ecosystems and Environment, 246, 134-143. https://doi.org/10.1016/j.agee.2017.06.003 [ Links ]

Balemi, T., & Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of Soil Science and Plant Nutrition, 12(3), 547-562. [ Links ]

Bojórquez, I., Hernández, A., García, D., Nájera, O., Flores, F., Madueño, A., & Bugarín, R. (2007). Características de los suelos cambisoles y fluvisoles de la llanura costera norte del estado de Nayarit, México. Cultivos Tropicales, 28, 19-24. [ Links ]

Bouma, D. (1967). Nutrient uptake and distribution in subterranean clover during recovery from nutritional stresses. Australian Journal Biologycal Sciences, 20, 601-612. [ Links ]

Brito-Vega, H., Salaya-Domínguez, J. M., Gómez-Méndez, E., Gómez-Vázquez, A., & Antele-Gómez, J. B. (2018). Physico-chemical properties of soil and pods (Theobroma cacao L.) in cocoa agroforestry systems. Journal of Agronomy, 17(1), 48-55. http://doi.org/10.3923/ja.2018.48.55 [ Links ]

Cantú-Silva, I., & Yáñez-Díaz, M.I. (2018). Efecto del cambio de uso de suelo en el contenido del carbono orgánico y nitrógeno del suelo. Revista Mexicana de Ciencias Forestales, 9(45), 122-151. [ Links ]

Castillo, E., Alvarez, C., & Contreras, Y. (2018). Caracterización fisicoquímica de la cáscara del fruto de un clon de caca (Theobroma cacao L.) cosechados en Caucagua estado Miranda, Venezuela. Revista de Investigación, 42(95), 154-167. [ Links ]

Celaya-Michel, H., & Castellanos-Villegas, A. E. (2011). Mineralización del nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana, 29(3), 343-356. [ Links ]

Cepeda-Ureña, J. (2020). Tendencias químicas de suelos dominicanos. Revista Agropecuaria y Forestal, 9(2), 25-42. [ Links ]

Corona-Rodríguez, A. (2019). Propiedades químicas de los suelos en el bosque semideciduo mesófilo de la estación experimental agroforestal de guisa, Cuba. Revista Cubana de Ciencias Forestales, 14(2), 263-275. [ Links ]

Cuanalo-de la Cerda, H. (1981). Manual para la descripción de perfiles de suelo en el campo. Estado de México, México: Colegio de Postgraduados. [ Links ]

De la Cruz-Landero, E., Córdova-Avalos, V., García-López, E., Bucio-Galindo, A., & Jaramillo-Villanueva, J. L. (2015). Manejo agronómico y caracterización socioeconómica del cacao en Comalcalco, Tabasco. Foresta Veracruzana, 17(1), 33-40. [ Links ]

Díaz-José., O., Aguilar-Ávila, J., Rendón-Medel, R., & Santoyo-Cortés, V. H. (2013). Current state of and perspectives on cocoa production in Mexico. Ciencia e Investigación Agraria, 40(2), 279-289. http://dx.doi.org/10.4067/S0718-16202013000200004 [ Links ]

Dogbatse, J. A., Arthur, A., Padi, F. K., Konlan, S., Quaye, A. K., Owusu-Ansah, F., & Awudzi, G.K. (2020). Influence of acidic soils on growth and nutrient uptake of cocoa (Theobroma CacaoL.( varieties. Communications in Soil Science and Plant Analysis, 51(17), 2280-2296. https://doi.org/10.1080/00103624.2020.1822384 [ Links ]

Dogbatse, J. A., Arthur, A., Awudzi, G. K, Quaye, A. K., Konlan, S., & Amaning, A. A. (2021). Effects of Organic and Inorganic Fertilizers on Growth and Nutrient Uptake by Young Cacao (Theobroma cacao L.). International Journal of Agronomy, 2021, 1-10. https://doi.org/10.1155/2021/5516928 [ Links ]

Etchevers-Barra., J. D. (1999). Técnicas de diagnóstico útiles en la medición de la fertilidad del suelo y el estado nutrimental de los cultivos. Terra Latinoamericana, 17(3), 209-219. [ Links ]

FAOSTAT (Organización de las Naciones Unidas Para la Alimentación y la Agricultura). (2021). Datos sobre alimentación y agricultura. Consultada el 24 de mayo, 2021, desde Consultada el 24 de mayo, 2021, desde https://www.fao.org/faostat/es/#homeLinks ]

Furcal-Beriguete, P. (2017). Extracción de nutrientes por los frutos de cacao en dos localidades en Costa Rica. Agronomía Mesoamericana, 28(1), 113-129. https://doi.org/10.15517/am.v28i1.23236 [ Links ]

Gallardo-Lancho, J. F. (2016).La Materia orgánica del suelo: residuos orgánicos, humus, compostaje y captura de carbono. Salamanca, España: SiFyQA. [ Links ]

Gamarra-Lezcano, C. C., Díaz-Lezcano, M. I., Vera-de Ortiz, M., Galeano, M. P., & Cabrera-Cardùs, A. J. N. (2018). Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales, 9(46), 4-26. [ Links ]

Garbanzo-León, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geográficas, 93, 20-41. https://doi.org/10.14350/rig.54706 [ Links ]

Isaac, M. E., & Borden, K. A. (2019). Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 444, 1-19. [ Links ]

Isaac, M. E., Timmer, V. R., & Quashie-Sam, S. J. (2007). Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient Cycling Agroecosystems, 78(2), 155-165. https://doi.org/10.1007/s10705-006-9081-3 [ Links ]

IUSS (International Union of Soil Sciences). (2015). Base referencial mundial del recurso suelo 2014. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos 106. Roma, Italia: FAO. ISBN: 978-92-5-308369-5 [ Links ]

Jagoret, P., Ruf, F., Du Castel, C., Harmand, J. M., Rafflegeau, S., Saj, S., … Wibaux, T. (2019). Agroforestry: diversified practices for the agroecological transition of African cacao farming. In C. François-Xavier, E. Poirier-Magona, S. Perret, R. Philippe, B. Rapidel, & M. C. Thirion (Eds.). The agroecological transition of agricultural systems in the Global South (pp. 80-104). Paris, France: Éditions Quae. ISBN: 978-2-7592-3056-3 [ Links ]

Jones, B. J., Wolf, B., & Mills, H. A. (1991). Plant analisys handbook. A practical sampling, preparation, analysis and interpretation guide. USA: Micro-Macro Publishing, Inc. ISBN: 9781878148001 [ Links ]

López, M., López de Rojas, I., España, M., Izquierdo, A., & Herrera, L. (2007). Efecto de la fertilización inorgánica sobre la disponibilidad de nutrimentos en el suelo, nivel nutricional de la planta y hongos micorrícicos arburculares en plantaciones deTheobroma Cacao. Agronomía Tropical, 57, 31-43. [ Links ]

López-Báez, O., Ramírez-González, S. I., Espinosa-Zaragoza, S., Moreno-Martínez, J. L., Ruiz-Bello, C., Villareal-Fuentes, J. M., & Ruiz-Rojas, J.L. (2015). Manejo agroecológico de la nutrición en el cultivo de cacao. Tuxtla Gutiérrez, Chiapas: Universidad Autónoma de Chiapas. ISBN: 978-607-8363-67-4 [ Links ]

López-Castañeda, A., Palma-López, D. J., Zavala-Cruz, J., Ortiz-Solorio, C. A., Tinal-Ortiz, S., & Valdez-Lazalde, J. R. (2017). Cartografía de suelos en la región de los Ríos, Tabasco, México; uso del modelo digital de elevación. Agroproductividad, 10(12), 22-28. [ Links ]

Marrocos, P. C. L., Loureiro, G. A. H. A., Araujo, Q. R. D., Sodré, G. A., Ahnert, D., Escalona-Valdez, R. A., & Baligar, V. C. (2020). Mineral nutrition of cacao (Theobroma cacaoL.): relationships between foliar concentrations of mineral nutrients and crop productivity. Journal of Plant Nutrition , 43(10), 1498-1509. https://doi.org/10.1080/01904167.2020.1739295 [ Links ]

Martínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de la Ciencia del Suelo y Nutrición Vegetal, 8(1), 68-96. http://dx.doi.org/10.4067/S0718-27912008000100006 [ Links ]

Mengel, K., & Kirkby, E. A. (2000). Principios de nutrición vegetal. (4ta ed). Basilea, Suiza: Instituto Internacional de la Potasa. [ Links ]

Mulia, S., Mcmahon, P. J., Purwantara, A., Purung, H. B., Djufry, F., Lambert, S., … Guest D. I . (2017). Effect of organic and inorganic amendments on productivity of cocoa on a marginal soil in Sulawesi, Indonesia. Experimental Agriculture, 55, 1-20. http://doi.org/10.1017/S0014479717000527 [ Links ]

Nelson, P. N., Webb, M. J., Berthelsen, S., Curry, G., Yinil, D., & Fidelis, C. (2011). Nutritional status of cocoa in Papua New Guinea. ACIAR Technical Reports No. 76. Canberra, Australia: Australian Centre for International Agricultural Research. ISBN: 9781921738388 [ Links ]

NOM-021-SEMARNAT-2000 (Norma Oficial Mexicana). (2002). Antes NOM-021-RECNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis. Diario Oficial de la Federación. D. F.: SEGOB. [ Links ]

Palma-López, D. J., Jiménez-Ramírez, R., Zavala-Cruz, J., Bautista-Zuñiga, F., Gavi-Reyes, F., & Palma-Cancino, D. Y. (2017). Actualización de la clasificación de suelos de Tabasco, México. Agroproductividad, 10(12), 29-35. [ Links ]

Palma-López., D. J., Morales-Garduza, M. A., & Triano-Sánchez, A. (2010). Suelos cacaoteros de Tabasco. En: V. Córdova-Avalos, E. García-López, & J. J. Obrador-Olán (Eds.). Cultivo y transformación del cacao en Tabasco (pp 11-19). Cárdenas, Tabasco, México: Colegio de Postgraduados. ISBN: 978-607-7533-75-7 [ Links ]

Pascual-Cordova, G., Obrador-Ólan, J.J., García-López, E., Carrillo-Ávila, E., Sánchez-Soto, S., Guerrero-Peña, A., & Ortiz-García, C. F. (2017). Evaluación del sistema agroforestal cacao (Theobroma cacao L.) mediante indicadores de calidad de suelo en Tabasco, México. Agroproductividad, 10(12), 36-42. [ Links ]

Pérez-Sosa, E., & Granados-Ramírez, G. R. (2020). Posibles efectos del cambio climático en la región productora de cacao en Tabasco, México. Tlalli. Revista de Investigación en Geografía, 3, 39-67. https://doi.org/10.22201/ffyl.26832275e.2020.3.1069 [ Links ]

Prabhakaran-Nair, K. P. (2010). Chapter 5: Cocoa (Theobroma cacao L.). In The Agronomy and Economy of Important Tree Crops of the Developing World. (pp. 131-180). London, England: Elsevier. https://doi.org/10.1016/B978-0-12-384677-8.00005-9 [ Links ]

Puentes-Páramo, Y. J., Menjivar-Flores, J. C. & Aranzazu-Hernández, F. (2016). Concentración de nutrientes en hojas, una herramienta para el diagnóstico nutricional en cacao. Agronomía Mesoamericana, 27(2), 329-336. [ Links ]

Quintino, R. de A., Guilherme, A. H de A. L., Ahnert, D., Escalona-Valdez, R. A., & Baligar, V. C. (2020). Interactions between Soil, Leaves and Beans Nutrient Status and Dry Biomass of Beans and Pod Husk of Forastero Cacao: An Exploratory Study.Communications in Soil Science and Plant Analysis, 51, 567-581. https://doi.org/10.1080/00103624.2020.1729369 [ Links ]

Ramírez-González, S. I. (2008). La moniliasis un desafío para lograr la sostenibilidad del sistema cacao en México. Tecnología en Marcha, 21(1), 97-110. [ Links ]

Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., … Wagai, R. (2018). Beyond clay: towards an improved set of variables for predicting soil organic matter content.Biogeochemistry , 137(3), 297-306. https://doi.org/10.1007/s10533-018-0424-3 [ Links ]

Reetz, H. F. (2016). Fertilizers and their efficient use. Paris, France: International Fertilizers Industry Assotiation. ISBN 979-10-92366-04-4 [ Links ]

Ribeiro, M. A. Q., Almeida, A. A. F, Mielke, M. S., Gomes, F. P., Pires, M. V., & Baligar, V. C. (2013). Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. Journal of Plant Nutrition, 36(8), 1161-1179. [ Links ]

Ribón-Carrillo, M. A., Salgado-García, S., Palma-López, D. J., & Lagunes-Espinosa, L. C. (2003). Propiedades químicas y físicas de un Vertisol cultivado con caña de azúcar. Interciencia 28(3), 154-159. [ Links ]

Ruttenberg, K. C. (2003). The global phosphorus cycle. Treatise on Geochemistry, 8, 585-643. https://doi.org/10.1016/B0-08-043751-6/08153-6 [ Links ]

Sadeghian-Khalajabadi, S., & Zapata-Hernández, R. D. (2015). Propiedades relacionadas con la adsorción de cationes intercambiables en algunos suelos de la zona cafetera de Colombia. Cenicafé, 63(2), 79-89. [ Links ]

Salgado-García, S., Palma-López, D. J., Castelán-Estrada, M., Lagunes-Espinoza, L. C., & Ortiz-Laurel, H. (2013). Manual para muestreos de suelos, platas y agua e interpretación de análisis para la producción sostenible de alimentos. Cárdenas, Tabasco, México: Colegio de Posgraduados. ISBN: 978-607-715-097-8 [ Links ]

Salvador-Morales, P., Sánchez-Hernández, R., Sánchez-Gómez, D., López-Noverola, U., Alejo-Santiago, G., Valdés-Velarde, E., & Gallardo-Lancho, J. F. (2017). Evolution of soil organic carbon during a chronosequence of transformation from cacao (Theobroma cacao L.) plantation to grassland. Acta Agronómica, 66(4), 525-530. http://dx.doi.org/10.15446/acag.v66n4.62543 [ Links ]

Salvador-Morales, P., Cámara-Cabrales, L. C., Martínez-Sánchez, J. L., Sánchez-Hernández, R., & Valdés-Velarde, E. (2019). Diversidad, estructura y carbono de la vegetación arbórea en sistemas agroforestales de cacao. Madera y Bosques, 25, 1-14. https://doi.org/10.21829/myb.2019.2511638 [ Links ]

Sánchez-Gutiérrez, F., Pérez-Flores, J., Obrador-Olán, J. J., Sol-Sánchez, Á., & Ruiz-Rosado, O. (2016). Árboles maderables en el sistema agroforestal de cacao en Cárdenas, Tabasco, México. Revista Mexicana de Ciencias Agrícolas, 7(spe 14), 2711-2723. [ Links ]

Schroeder, M. A., López, A. E., & Martínez, G. C. (2005). Resultados preliminares del análisis foliar de algunas especies medicinales del nordeste argentino. Agrotecnia, 15, 8-11. [ Links ]

Sharma, K.L. (2011). Effect of agroforestry systems on soil quality-monitoring and assessment. Hydebarad, India: Central Research Institute for Dryland Agriculture. [ Links ]

SIAP (Servicio de Información Agroalimentaria y Pesquera). (2021). Sistema de información Agroalimentaria de Consulta. Consultado el 25 de mayo, 2021, desde: Consultado el 25 de mayo, 2021, desde: https://www.gob.mx/siap/documentos/siacon-ng-161430Links ]

Singh, K., Sanderson, T., Field, D., Fidelis, C., & Yinil, D. (2019). Soil security for developing and sustaining cocoa production in Papua New Guinea. Geoderma Regional, 17. https://doi.org/10.1016/j.geodrs.2019.e00212 [ Links ]

Soil Survey Staff (2014). Claves para la Taxonomía de Suelos. USA: Departamento de Agricultura de los Estados Unidos-Servicio de Conservación de Recursos Naturales. [ Links ]

Sotelo, E., Gutiérrez, M. C., Cruz, G., Ortiz, C. A., & Segura, M. A. (2008). Historia y desarrollo de la clasificación de vertisoles en el sistema FAO y la taxonomía. Terra Latinoamericana, 26(4), 325-332. [ Links ]

Soto-Mora, E. S., Hernández-Vázquez, M., Luna-Zendejas, H. S., Ortiz-Ortiz, E., & García-Gallegos, E. (2016). Evaluación del contenido de materia orgánica en suelos agrícolas y su relación carbono/nitrógeno. Revista Iberoamericana de Ciencias, 3(5), 98-102. [ Links ]

Statsoft. (2011). STATISTICA User´s Guide. Version 10. Tulsa, OK, USA: Statsoft Inc. [ Links ]

Stevenson, F. J. (1994). Humus Chemistry, Genesis, Composition, Reactions. (2nd ed.) New York, USA: John Wiley & Sons. [ Links ]

Suárez, G. M., Florido-Bacallao, R., Soto-Carreño, F., & Caballero-Núñez, A. (2013). Bases para la zonificación agroecológica en el cultivo de cacao (Theobroma cacao, Lin) por medio del criterio de expertos. Cultivos Tropicales, 34(2), 30-37. [ Links ]

Sulçe, S., Palma-López, D. J., Jacquin, F., Vong, P. C., & Guiraud, G. (1996). Study of immobilization and remobilization of nitrogen fertilizer in cultivated soils by hydrolytic fractionation. European Journal of Soil Science, 47, 249-255. [ Links ]

Van Vliet, J. A., Maja, S., & Ken, E. G. (2015). Mineral Nutrition of Cocoa. A Review. Wageningen, The Netherlands: Wageningen University-Research Centre. ISBN: 978-94-6257-705-3 [ Links ]

White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073-1080. https://doi.org/10.1093/aob/mcq085 [ Links ]

Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522-537. https://doi.org/10.1016/j.scitotenv.2017.08.095 [ Links ]

1Báez-Daza, E. Y. (2018). Producción y aporte de nutrientes en la hojarasca de las especies abarco (Cariniana piryformis M), teca (Tectona grandis L.f.) y cacao (Theobroma cacao L.) en un sistema agroforestal en los municipios de Rionegro, Santander y Muzo, Boyacá. Tesis para obtener el grado de Magister en Agroforestería Tropical. Maestría en Agroforestería Tropical, Universidad de Ciencias Aplicadas y Ambientales. Bogotá, Colombia. Disponible en https://repository.udca.edu.co/handle/11158/1026

Anexo 1:

Descripción de los perfiles de suelo bajo estudio.  

Annex 1: Description of the soil profiles under study. 

Perfil: 1

Fecha: 04/02/2020.

Productor: Santiago Gómez.

Localidad: Sargento López, Segunda Sección, Comalcalco, Tabasco.

Localización: 445143, 927003.

Elevación: 9 m de altitud

Pendiente: Ligera pendiente menor al 1%.

Relieve: Plano.

Drenaje del Sitio: Normal.

Aplicación de riego o drenaje: Drenaje parcelario.

Drenaje del Perfil: Bien drenado.

Manto freático visible: Si.

Material Parental: Aluviones estables del Cuaternario Reciente.

Flora Cultivada: Cacao bajo sistema tradicional con árboles de sombra.

Flora Nativa: Selva mediana inundable.

Fauna: Gallinas, peas.

Observaciones: Día despejado. En el primer horizonte se observa hojas y materia orgánica.

Perfil 1 Horizonte (cm) Descripción del perfil
A1 (00-20) Transición, media y horizontal; humedad, húmedo;color de matriz, negro (2.5Y 1/2.5); sin motas; textura, migajón arcilloso; estructura, fuertemente desarrollada, bloques subangulares y angulares, finas y medias; consistencia en húmedo, firme y cuando muy húmedo, pegajoso y plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; poros, numerosos, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, rápida; raíces, comunes, finas, delgadas, medias y gruesas; fauna, presencia de lombrices y rastros de actividad de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
Bwg (20-62) Transición, tenue y horizontal; humedad, húmedo;color de matriz, pardo grisáceo muy oscuro (2.5Y 3/2); motas, gris verdusco muy oscuro (10Y 3/1), marcadas, comunes, finísimas, muy finas y finas; textura, arcilla limosa; estructura, fuertemente desarrollada, bloques subangulares y angulares, finas y medias; consistencia en húmedo, firme y cuando muy húmedo, pegajoso y muy plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; poros, numerosos, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, moderada; raíces, comunes, finas, delgadas, medias y gruesas; fauna, presencia de lombrices y rastros de actividad de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 7.
Cg1 (62-98) Transición, tenue y horizontal; humedad, saturado;color de matriz, pardo oliva (2.5Y 4/3); motas, negro verdusco (5GY 2.5/1), tenues, comunes, finísimas y muy finas; textura, arcilla limosa; estructura, moderadamente desarrollada, bloques subangulares y angulares, muy finas, finas y medias; consistencia en húmedo, friable y cuando muy húmedo, pegajoso y muy plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, moderada; raíces, pocas, medias y gruesas; fauna, presencia de lombrices y rastros de actividad de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.
Cg2 (98-133) Humedad, saturado;color de matriz, pardo oliva (2.5Y 4/3); motas, negro verdusco (10Y 2.5/1), marcadas, comunes, finas, medias y grandes; textura, migajón arcillo limoso; estructura, moderadamente desarrollada, bloques subangulares, finas y medias; consistencia en húmedo, friable y cuando muy húmedo, pegajoso y muy plástico; nódulos, pocos, medianos, pardo amarillento, subangulares, blandos de óxidos de hierro con limo; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, lenta; raíces, pocas y delgadas; presencia de lombrices y rastros de actividad de lombrices; pH 7.

Perfil: 2

Fecha: 06/02/2020.

Productor: Armando Leyva.

Localidad: Poblado C-16, Cárdenas, Tabasco.

Localización: 448074, 2006067.

Elevación: 17 m de altitud

Pendiente: Ligera pendiente del 1% hacia el Norte.

Relieve: Plano.

Drenaje del Sitio: Normal. Aplicación de riego o drenaje:

Drenaje parcelario aproximadamente a 100 metros entre drenes y de 30 a 40 cm de profundidad.

Drenaje del Perfil: Pobremente drenado.

Manto freático visible: No.

Material Parental: Aluviones estables del Cuaternario Reciente.

Flora Cultivada: Cacao con árboles de sombra de Mote, Guasimo, Pataste.

Flora Nativa: Selva mediana perennifolio.

Fauna: Hormigas.

Observaciones: Día nublado. Se encontró presencia de ligero agrietamiento en la superficie del suelo que se prolonga alrededor de 1 metro.

Perfil 2 Horizonte (cm) Descripción del perfil
A1 (00-19) Transición, media y horizontal; humedad, húmedo;color de matriz, pardo grisáceo oscuro (10YR 4/2); sin motas; textura, arcilla limosa; estructura, fuertemente desarrollada, bloques subangulares y angulares, finas y medias; consistencia en húmedo, firme y cuando muy húmedo, pegajoso y plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; poros, numerosos, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, moderada; raíces, abundantes, finas, delgadas y medias; abundante actividad biológica, presencia de lombrices, arañas, hormigas y deyecciones de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
Bw (19-55) Transición, tenue y horizontal; humedad, húmedo;color de matriz, pardo fuerte (7.5YR 5/8); motas, gris oscuro (7.5YR 4/1), marcadas, comunes, muy finas y finas y motas, gris (7.5YR 5/1), marcadas, pocas y muy finas; textura, arcillosa; estructura, fuertemente desarrollada, bloques subangulares y angulares, finas y medias; consistencia en húmedo muy firme y cuando muy húmedo, pegajoso y muy plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de carbón; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, lenta; raíces, comunes, finas, delgadas, medias y gruesas; fauna, hormigas y deyecciones de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
Cg1 (55-90) Transición, tenue y horizontal; humedad, húmedo;color de matriz, gris verdoso (10Y 6/1); motas, amarillo rojizo (5YR 7/6), marcadas, comunes, muy finas y finas y motas, negro (N 2.5/1), marcadas, pocas y muy finas; textura, arcillosa; estructura, fuertemente desarrollada, bloques subangulares, finas y medias; consistencia en húmedo, firme y cuando muy húmedo, pegajoso y plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de carbón; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, comunes, finas, delgadas y medias; fauna, hormigas y deyecciones de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
Cg2 (90-115) Transición, tenue y horizontal; humedad, húmedo;color de matriz, gris muy oscuro (N 3/1); motas, pardo fuerte (7.5YR 5/8), marcadas, comunes, muy finas, finas y medias y motas, pardo (7.5YR 5/3), marcadas, pocas y muy finas; textura, arcillosa; pedregosidad, ligeramente pedregoso, del tamaño de grava, subangulares de caliza con reacción al HCl, calcáreo, fácilmente audible, efervescencia moderada y fácilmente visible; estructura, fuertemente desarrollada, bloques subangulares, finas y medias; consistencia en húmedo, firme y cuando muy húmedo, muy pegajoso y plástico; cutanes, planchado por presión, continuos, delgados, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de Mn con efervescencia al H2O2; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, pocas, finas y medias; sin fauna; reacción al HCl en la matriz del suelo, muy ligeramente calcáreo, de apenas atenuamente audible y sin ningún efecto visible de la efervescencia; pH 7.
Cg3 (115-150) Humedad, húmedo;color de matriz, gris azuloso oscuro (5B 4/1); motas, negro verdusco (5GY 2.5/1), marcadas, comunes, muy finas, finas y medias y motas, pardo rojizo claro (5YR 6/4), marcadas, pocas y muy finas; textura, arcillosa; pedregosidad, ligeramente pedregoso, del tamaño de grava, subangulares de caliza con fuerte reacción al HCl, calcáreo, fácilmente audible, efervescencia moderada y fácilmente visible; estructura, fuertemente desarrollada, bloques subangulares y angulares, finas y medias; consistencia en húmedo, muy firme y cuando muy húmedo, muy pegajoso y muy plástico; cutanes, planchado por presión, continuos, delgados, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, pocos, muy pequeños, negros, esferoides. Blandos.

Perfil: 3

Fecha: 22/06/2020.

Productor: Eduardo.

Localidad: R/a Río Seco y Montaña, Tercera Sección, Cunduacán, Tabasco.

Localización: 472705.912, 2007451.342.

Elevación: 16 m de altitud

Pendiente: Ligera pendiente menor al 1%.

Relieve: Plano. Drenaje del Sitio: Normal.

Aplicación de riego o drenaje: Sin riego y sin drenaje.

Drenaje del Perfil: Pobremente drenado.

Manto freático visible: No.

Material Parental: Aluviones estables del Cuaternario Reciente.

Flora Cultivada: Cacao con árboles de sombra.

Flora Nativa: Selva mediana perennifolio.

Fauna: Hormigas, arañas, alacranes.

Observaciones: Ninguna.

Perfil 3 Horizonte (cm) Descripción del perfil
A1 (00(6-12) Transición, media y ondulada; humedad, húmedo;color de matriz, pardo muy oscuro (10YR 2/2); sin motas; textura, migajón limoso; estructura, fuertemente desarrollada, bloques subangulares, finas, medias y grandes; consistencia en húmedo, friable y cuando muy húmedo, ligeramente pegajoso y plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; poros, numerosos, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, moderada; raíces, abundantes, finas, delgadas y medias; abundante actividad biológica, presencia de lombrices, arañas, hormigas y deyecciones de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
A2 (6-12(24-32) Transición, media y ondulada; humedad, ligeramente húmedo;color de matriz, pardo oscuro (10 YR 3/3); motas, pardo amarillento (10YR 5/8), prominentes, comunes, finas y medias; textura, migajón limoso; estructura, fuertemente desarrollada, bloques subangulares, finas, medias y grandes; consistencia en húmedo, friable y cuando muy húmedo, ligeramente pegajoso y plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de carbón; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, lenta; raíces, comunes, finas, delgadas, medias y gruesas; fauna, hormigas y deyecciones de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
Cg (24-32(55) Transición, media y horizontal; humedad, ligeramente húmedo;color de matriz, pardo amarillento oscuro (10YR 4/8); motas, gris (2.5Y 5/1), marcadas, muchas, finas y medias, y motas, pardo fuerte (7.5 YR 4/6), tenues, comunes, muy finas, finas y medias; textura, migajón arcilloso; estructura, fuertemente desarrollada, bloques subangulares, muy finas, finas, medias y grandes; consistencia en húmedo, friable y cuando muy húmedo, ligeramente pegajoso y plástico; cutanes, planchado por presión, continuos, espesos, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de carbón; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, comunes, finas, delgadas y medias; fauna, hormigas y deyecciones de lombrices; nula reacción al HCl y al H2O2 en la matriz del suelo; pH 6.5.
C1 (55-73) Transición, media y horizontal; humedad, ligeramente húmedo;color de matriz, pardo amarillento (10 YR 4/4); motas, pardo fuerte (7.5YR 4/6), marcadas, muchas, finas y medias y motas, gris (2.5 Y 5/1), marcadas, comunes, muy finas y finas; textura, migajón arcillo arenosa; estructura, moderadamente desarrollada, bloques subangulares, muy finas, finas y medias; consistencia en húmedo, friable y cuando muy húmedo, pegajoso y muy plástico; cutanes, planchado por presión, continuos, delgados, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de Mn con efervescencia al H2O2; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, pocas, finas y medias; sin fauna; reacción al HCl en la matriz del suelo, muy ligeramente calcáreo, de apenas atenuamente audible y sin ningún efecto visible de la efervescencia; pH 7.
Cg2 (73-88) Transición, media y horizontal; humedad, ligeramente húmedo;color de matriz, pardo grisáceo oscuro (10 YR 4/2); motas, pardo amarillento (10 YR 5/8), marcadas, muchas, medias y grandes, y motas, pardo rojizo oscuro (10YR 3/4), marcadas, pocas, finísimas y muy finas; textura, migajón arcillo limoso; estructura, fuertemente desarrollada, bloques subangulares, finas, medias y grandes; consistencia en húmedo, friable y cuando muy húmedo, ligeramente pegajoso y plástico; cutanes, planchado por presión, continuos, delgados, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de Mn con efervescencia al H2O2; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, pocas, finas y medias; sin fauna; reacción al HCl en la matriz del suelo, muy ligeramente calcáreo, de apenas atenuamente audible y sin ningún efecto visible de la efervescencia; pH 7
Cg3 (88-112) Transición, media y horizontal; humedad, ligeramente húmedo;color de matriz, pardo amarillento oscuro (10 YR 4/6); motas, gris pardusco (10 YR 6/2), marcadas, comunes, finas, medias y grandes, y motas, pardo fuerte (7.5YR 4/6), marcadas, pocas, finísimas y muy finas; textura, migajón arcillo arenoso; estructura, fuertemente desarrollada, bloques subangulares, finas, medias y grandes; consistencia en húmedo, friable y cuando muy húmedo, pegajoso y plástico; cutanes, planchado por presión, continuos, delgados, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de Mn con efervescencia al H2O2; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, pocas, finas y medias; sin fauna; reacción al HCl en la matriz del suelo, muy ligeramente calcáreo, de apenas atenuamente audible y sin ningún efecto visible de la efervescencia; pH 7
C2 (112-150) Humedad, ligeramente húmedo;color de matriz, pardo grisáceo oscuro (10 YR 4/2); motas, pardo amarillento (10 YR 4/6), marcadas, muchas, finas, medias y grandes, y motas, pardo grisáceo muy oscuro (10YR 3/2), tenues, pocas, finísimas y muy finas; textura, migajón arcillo limoso; estructura, fuertemente desarrollada, bloques subangulares, finas, medias y grandes; consistencia en húmedo, firme y cuando muy húmedo, pegajoso y plástico; cutanes, planchado por presión, continuos, delgados, en cara de agregados de minerales arcillosos con óxidos e hidróxidos de hierro; nódulos, muy pocos, muy pequeños, negros, esferoides, blandos de Mn con efervescencia al H2O2; poros, frecuentes, muy finos, finos y medianos, continuos, caóticos, dentro y fuera de los agregados, tubulares; permeabilidad, muy lenta; raíces, pocas, finas y medias; sin fauna; reacción al HCl en la matriz del suelo, muy ligeramente calcáreo, de apenas atenuamente audible y sin ningún efecto visible de la efervescencia; pH 7

Anexo 2:

Análisis físicos y químicos de los perfiles de suelo.  

Annex 2: Physical and chemical analysis of soil profiles. 

Ho. Prof. (cm) DA (g cm-3 ) pH(H2O) relación 1:2 CE (dS m-1) MO N P (mg kg-1) K Ca Mg Na CIC % CO PSB Arcilla Limo Arena Clasificación textural
% cmol (+) kg-1 %
1 00-20 1.18 6.25 0.06 2.68 0.12 9.92 0.12 12.81 1.05 0.10 23.98 1.55 58.715596 30 48 22 Franco arcilloso
2 20-62 1.37 5.74 0.04 1.51 0.10 8.52 0.10 12.18 0.76 0.09 23.16 0.87 56.692573 36 44 20 Franco arcilloso
3 62-98 1.39 5.61 0.03 0.94 0.06 5.34 0.08 11.01 0.44 0.06 22.86 0.54 50.699913 32 48 20 Franco arcilloso
4 98-113 1.38 4.91 0.03 0.47 0.04 5.05 0.05 10.87 0.35 0.04 22.65 0.27 49.933775 12 54 34 Franco limoso
Eutric Gleyic Cambisol (Clayic). CM-gl.eu-ce
Ho. Prof. (cm) DA (g cm-3 ) pH(H2O) relación 1:2 CE (dS m-1) MO N P (mg kg-1) K Ca Mg Na CIC % CO PSB Arcilla Limo Arena Clasificación textural
% cmol (+) kg-1 %
1 00-19 1.07 6.20 0.09 2.45 0.10 8.99 0.12 11.89 0.90 0.08 22.18 1.42 58.566276 42 44 14 Arcilla limosa
2 55-90 1.28 6.09 0.05 1.41 0.08 8.05 0.11 11.31 0.81 0.08 22.02 0.82 55.903724 50 38 12 Arcilla
3 55-90 1.31 5.94 0.04 1.07 0.08 6.87 0.09 10.93 0.50 0.06 21.87 0.62 52.949246 52 32 16 Arcilla
4 90-115 1.25 5.72 0.04 0.98 0.06 5.22 0.06 10.21 0.30 0.03 21.61 0.57 49.051365 56 30 14 Arcilla
5 115-150 1.28 5.41 0.03 0.28 0.05 4.15 0.03 9.88 0.20 0.02 20.98 0.16 48.28408 56 30 14 Arcilla
Haplic Vertisol (Hypereutric, Gleyic). VR.ha-je.gl.
Ho. Prof. (cm) DA (g cm-3 ) pH(H2O) relación 1:2 CE (dS m-1) MO N P (mg kg-1) K Ca Mg Na CIC % CO PSB Arcilla Limo Arena Clasificación textural
% cmol (+) kg-1 %
1 (00(6-12) 6.48 0.13 2.92 0.14 11.13 0.26 14.45 2.15 0.15 27.41 1.69 62.057643 16 56 28 Franco limoso
2 (6-12(24-32) 6.12 0.10 1.85 0.12 10.22 0.22 12.31 1.46 0.13 24.11 1.07 58.564911 22 54 24 Franco limoso
3 (24-32(55) 5.98 0.09 1.00 0.10 8.08 0.18 11.88 1.02 0.11 22.77 0.58 57.927097 18 58 24 Franco limoso
4 55-73 5.53 0.08 0.88 0.09 6.53 0.15 10.91 0.96 0.10 20.89 0.51 58.018191 14 72 14 Franco limoso
5 73-88 5.40 0.06 0.54 0.05 5.52 0.15 10.22 0.80 0.09 20.03 0.31 56.215676 22 52 26 Franco limoso
6 88-112 5.16 0.04 0.37 0.05 5.05 0.12 9.53 0.64 0.07 18.65 0.21 55.549598 14 70 16 Franco limoso
7 112-150 5.05 0.02 0.20 0.04 3.88 0.10 8.18 0.41 0.04 17.86 0.12 48.880179 30 56 14 Franco arcillo-limoso
Gleyic Eutric Fluvisol (Loamic). FL-gl.eu-lo.

Recibido: 03 de Diciembre de 2022; Aprobado: 22 de Enero de 2023

Autor para correspondencia (dapalma@colpos.mx)

2

Editor de Sección: Dr. Francisco Bautista Zuñiga

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons