SciELO - Scientific Electronic Library Online

 
 número129Pezizales (Ascomycota) asociados a bosque de pino-encino en Yécora, Sonora, MéxicoNueva información del perfil de compuestos bioactivos, potencial antioxidante y antiproliferativo de Parkinsonia praecox (Fabaceae) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Acta botánica mexicana

versión On-line ISSN 2448-7589versión impresa ISSN 0187-7151

Act. Bot. Mex  no.129 Pátzcuaro  2022  Epub 06-Feb-2023

https://doi.org/10.21829/abm129.2022.2112 

Research articles

An updated taxonomic circumscription of Tricholoma mesoamericanum that includes Tricholoma colposii (Agaricales, Tricholomataceae)

Actualización de la circunscripción taxonómica de Tricholoma mesoamericanum que incluye a Tricholoma colposii (Agaricales, Tricholomataceae)

1Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.

2Instituto de Ecología, A.C, Catedrático CONACYT, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.

3Instituto de Ecología, A.C., Herbario XAL, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.


Abstract:

Background and Aims:

The species recorded in Mexico (state of Veracruz) in the 1980s as “Tricholoma magnivelare” (or under its synonym, T. ponderosum) changed over the years from being a fungus not considered to be edible in this country, to a subject of international commercialization when Asian sellers became aware of its occurrence in Mexico and for its relationship with the group of T. matsutake. The collections supporting these previous records from different regions of the country (and identified under the same name) were studied only morphologically. Based on morphological and molecular information (ITS), T. mesoamericanum was described from Oaxaca state (southern Mexico) (type), while T. colposii was more recently described from Veracruz state, both related to the group of species around T. matsutake. The aim of this study was to determine, with morphological characters and sequences (ITS) obtained from fresh samples, the taxonomic identity of specimens morphologically resembling those species.

Methods:

Field work was carried out during 2009 and 2018 in two Pinus-forested sites in the states of Puebla and Veracruz (eastern Mexico). Fruit bodies acquired in a popular market in the city of Xalapa, Veracruz, were also studied. Measurements, color and the morpho-anatomical and organoleptic characteristics of the samples were recorded. DNA extraction, PCR, sequencing of the Internal Transcribed Spacer (ITS) region of ribosomal DNA, and a phylogenetic analysis were conducted.

Key results:

Molecular and morphological studies presented here reveal that Mexican populations of “T. magnivelare” sampled in the states of Veracruz and Puebla are grouped in a clade including T. mesoamericanum and T. colposii type specimens, separate from T. magnivelare s. str. from USA.

Conclusions:

The identity of the material studied corresponds to T. mesoamericanum, which is consistent with previous studies showing that the “matsutake” mushrooms in the country represent T. mesoamericanum, and as shown here, with T. colposii as a synonym.

Key words: commercial mushrooms; ectomycorrhizal fungi diversity; matsutake mushrooms; wild edible mushrooms

Resumen:

Antecedentes y Objetivos:

La especie registrada en México (estado de Veracruz) en la década de 1980 como “Tricholoma magnivelare” (bajo su sinónimo, T. ponderosum) de ser un hongo no utilizado como comestible en el país, pasó a ser objeto de comercialización internacional, cuando vendedores asiáticos conocieron su presencia en México y su relación con el grupo de T. matsutake. Los especímenes en los que se basaron registros previos en el país (identificados con el mismo nombre), fueron estudiados solo morfológicamente. Con base en información morfológica y molecular (ITS), recientemente se describieron a T. mesoamericanum del estado de Oaxaca (sur de Mexico) (tipo), y a T. colposii del estado de Veracruz, ambas relacionadas al grupo de especies alrededor de T. matsutake. El objetivo de este estudio fue determinar, con base en caracteres morfológicos y secuencias de (ITS) obtenidas a partir de muestras frescas, la identidad taxonómica de especímenes con similitudes con ambas especies.

Métodos:

Durante 2009 y 2018 se recolectaron especímenes en dos bosques de Pinus en los estados de Puebla y Veracruz (este de México). Se estudiaron fructificaciones adquiridas en un mercado popular en Xalapa, Veracruz. Se registraron las características morfo-anatómicas y organolépticas de las muestras. Se efectuó la extracción del ADN, PCR, secuenciación de la región del espaciador transcrito interno (ITS) del ADN ribosomal, y un análisis filogenético.

Resultados clave:

Estudios moleculares y morfológicos aquí presentados revelan que poblaciones mexicanas de “T. magnivelare” recolectadas en los estados de Veracruz y Puebla se identifican con T. mesoamericanum y el tipo de T. colposii, en un clado independiente de T. magnivelare s. str. de EUA.

Conclusiones:

El material estudiado se identifica con T. mesoamericanum, consistente con estudios previos que muestran que los hongos del grupo “matsutake” en el país están representados por T. mesoamericanum y, como se demuestra aquí, con T. colposii como un sinónimo.

Palabras clave: hongos comerciales; hongos ectomicorrizógenos; matsutake; hongos comestibles silvestres

Introduction

Mexico is a country with vast knowledge about the use of wild edible fungi species extending back to pre-Hispanic times (Dubovoy, 1968). The traditional consumption of numerous ectomycorrhizal species collected as edibles in forested areas throughout the country is notable, but especially in the central region where the Trans-Mexican Volcanic Belt is present (Herrera and Guzmán, 1961; Martínez-Alfaro et al., 1983; Bandala et al., 1997; Montoya-Esquivel et al., 2003). Fruit bodies of edible fungi are widely used in the country including, for example, Boletus spp., Amanita spp., Cantharellus spp., Russula spp., and Ramaria spp. (Herrera and Guzmán, 1961). There are also species of other genera used in localized areas of Mexico such as the tropical Lactifluus chiapanensis (Montoya, Bandala & Guzmán) De Crop (Montoya et al., 1996; De Crop et al., 2017) (locally named Moní) and Tremelloscypha gelatinosa (Murrill) Oberw. & K. Wells (Wells and Oberwinkler, 1982) (locally named Nangañaña) in Chiapas (southern Mexico) (Montoya et al., 1996; Bandala et al., 2014). A special case is the Mexican Tricholoma (Fr.) Staude species related to T. matsutake (Ito & lmai) Sing., first recorded by Montoya-Bello et al. (1987) in the Cofre de Perote mountain or Nauhcampatépetl (Náhuatl=mountain of the four sides) in Veracruz state, under the name T. ponderosum (Sacc.) Sing. ((a prior illegitimate name for T. magnivelare (Peck) Redhead (1984)).

Tricholoma matsutake is an edible mushroom highly valued for its organoleptic characteristics and medicinal properties, related to its metabolomic diversity, which comprises around 800 bioactive molecules, such as amino acids, peptides, carbohydrates, terpenoids, organic heterocyclics, glycerophospholipids, sphingolipids, steroids, and fatty acids with their derivatives (Li et al., 2016; Wen et al., 2022). Zeller and Togashi (1934) considered T. ponderosum (as Armillaria ponderosa Sacc., now T. murrillianum Sing.) as the “American matsutake”, a valuable edible species in the United States of America (USA) according to Thiers and Sundberg (1976). The record of the occurrence of matsutake relatives in the Cofre de Perote mountain by Montoya-Bello et al. (1987) attracted attention from Mexican academics and Japanese vendors and, consequently, this previously unnoticed species became a highly prized edible mushroom, beginning to be recognized under the vernacular names “hongo blanco de ocote” or simply “hongo blanco” (white mushroom), “hongo canela” (cinnamon mushroom), “hongo de rayo” (lined mushroom), “hongo rico” (tasty mushroom), and “tanaca” (Japanese family name) (Bandala et al., 1997; Jarvis et al., 2004). This fungus attracted much interest and became subject to large-scale commercial harvesting in many parts of the country.

On the Cofre de Perote Mountain, where ancestral knowledge of edible mushrooms prevails, this white mushroom was not traditionally used before 1987. After the aforementioned record, its use grew in conjunction with a Japanese trading company paying relatively high prices by local standards for this previously non-valuable species (Bandala et al., 1997; Jarvis et al., 2004). With this new knowledge, a change of perception arose among the native population about this and other wild edible mushrooms. Until the 1980s the ethnomycological culture of the area recognized a list of about 50 species known with descriptive vernacular names in Nahuatl or Spanish (Guzmán and Villarreal, 1984; Villarreal and Guzmán, 1985; Jarvis et al., 2004), but after the discovery of that Tricholoma species and the increasing commercial demand from foreign buyers of edible mushrooms, a new intensive and selective exploitation of mushrooms arose in the area (Bandala et al., 1997), even adopting European or Asiatic names for different species, both in the countryside and in popular markets in urban areas around that mountain. For example, restaurant owners, chefs, and local resellers were already referring to edible mushrooms with names, such as porcini, white matsutake, etc., although most of the species collected and traded locally do not correspond to the species originally known from Europe, Asia or even the United States of America. Some of these names are currently replacing vernacular names in the markets.

After the 1987 record of the supposed “T. magnivelare”, a new business model emerged, and locals began to sell this species to intermediaries or directly to foreign buyers for exportation or distribution to other areas of the country. Parallel to the new demand for the white mushroom, other edible species also began to be offered for sale, and the collection practices in the area were modified, seeking to accumulate larger quantities to sell. Today, unlike in the past, it is less common for sellers to have direct contact with buyers in the popular markets where mushrooms are sold. The native peoples’ purpose for collecting mushrooms also has changed. Originally it was only for family consumption or for small-volume sales in baskets or buckets directly in surrounding towns or local markets in the city of Xalapa, located about 64 km from the mountain.

Tricholoma magnivelare according to Trudell et al. (2017) has been found only in North America and is paler in color in contrast to T. matsutake. These authors described from Mexico, T. mesoamericanum Justo & Cifuentes which, together with its sister species T. magnivelare and T. murrillianum Singer, represent the matsutake group in North America (Ota et al., 2012; Trudell et al., 2017). Carpophores of T. mesoamericanum by these authors were collected in different regions of Mexico, including sites in the states of Chihuahua, Guerrero, Hidalgo and Oaxaca (type locality). Recently, Sandor et al. (2020) carried out an analysis of the mitochondrial DNA polymorphism and a phylogeographic analysis of the species of the matsutake complex at a global level, in which they found consistency between the phylogenies obtained from the different molecular markers of mitochondrial DNA and the phylogeny obtained with the ITS molecular marker.

The objective of this work was to determine the taxonomic identity of fresh samples of one Tricholoma gathered in the Cofre de Perote region and adjacent areas and samples collected in a forest from Puebla that macroscopically reminded T. magnivelare, T. mesoamericanum and T. colposii Pérez-Moreno, Martínez-Reyes & Ayala-Vásquez. Based on the molecular evidence (that includes type specimens of the three species) and on the color and morphological (macro-microscopic) features in the new fresh collections we concluded that all specimens studied corresponds to T. mesoamericanum and that T. colposii should be reduced to synonymy. Our results agree with other authors (Trudell et al., 2017) in that T. magnivelare s. str. occurs in eastern USA and Canada. So far, it has not been recorded in Mexico, and until now, the recorded matsutake species in Mexico, which also occurs in the southwestern USA, is T. mesoamericanum.

Material and Methods

Sampling and morphological study

Ten explorations during 2009 and 2018 in two different sites in the states of Puebla and Veracruz, Mexico were carried out for the collection of Tricholoma samples. At the Cofre de Perote mountain, in the municipality Las Vigas, Veracruz, the study site is located at an elevation of 2520-2870 m, covered with conifer forests dominated mainly by Pinus ayacahuite Ehren., P. montezumae Lamb., P. patula Schiede ex Schltdl. & Cham. and P. pseudostrobus Lindl. The climate is cold subhumid to mild subhumid with average annual temperatures between -3-18°C and average annual rainfall between 200-1800 mm (Fuentes-Moreno et al., 2017). In the northeast of the state of Puebla, in the municipality Tlatlauquitepec, the sampling area is located at 2792 m, covered with conifer forests dominated by P. pseudostrobus. In addition, fructifications bought in the Alcalde y García market in Xalapa, popularly known as the San José market, were also studied. Vendors mentioned that such fruit bodies “came from the Cofre de Perote”.

The specimens obtained in the field and the market were studied with respect to measurements, colors and morpho-anatomical and organoleptic characteristics. Colors recorded follow Munsell (1994) (e.g., 2.5Y 8/2-4) and Kornerup and Wanscher (1978) (e.g., 4A4). A micromorphological study was carried out on the preserved samples using a Nikon ECLIPSE Ci (Nikon, Tokyo, Japan) compound microscope with a drawing tube. The microscopic study was done in slides mounted in 3% KOH and stained with 1% Congo red. Thirty-five basidiospores per collection were measured in lateral view, following Montoya et al. (2019b). In the descriptions X̅ denotes an interval of mean values of basidiospore length and width per collection in n collections, and Q̅ refers to the range of coefficient Q (where Q is the average of the ratio of basidiospore length/basidiospore width in each collection).

Collections form part of the herbarium XAL (Thiers, 2022) of the Instituto de Ecología, A.C. in Xalapa, Veracruz, Mexico.

DNA extraction, amplification, and sequencing

DNA was obtained from the collected basidiomes following the method of César et al. (2018). The Internal Transcribed Spacer (ITS) region of ribosomal DNA was amplified using the primers ITS1F and ITS5/ITS4 (White et al., 1990; Gardes and Bruns, 1993). Sequencing of the amplified PCR products was performed by Macrogen Inc., Seoul, Korea. All the sequences obtained (Table 1) were edited, assembled, and deposited in GenBank (Benson et al., 2017).

Table 1: Tricholoma (Fr.) Staude taxa included in this study: samples, location and GenBank accession number for ITS sequences; those in bold represent sequences generated in this study and their vouchers were deposited in the XAL herbarium. 

Taxon Voucher/strain Location GenBank
Hypsizygus marmoreus (Peck) H.E. Bigelow HMW1 Malaysia HM561970
Tricholoma anatolicum H.H. Doğan & Intini HD1058 TYPE Turkey MF612194
Tricholoma bakamatsutake Hongo Syntype no. 1283 TYPE Japan AB699657
Tricholoma caligatum (Viv.) Ricken TB-2010-MEX 48 Mexico KC152249
Tricholoma caligatum (Viv.) Ricken CM030 Algeria KC565866
Tricholoma caligatum (Viv.) Ricken JV07-451 Spain LT000152
Tricholoma caligatum (Viv.) Ricken PH99-519 France LT000079
Tricholoma colposii J. Pérez-Moreno, M. Martínez-Reyes M. & O. Ayala-Vásquez O. MEXU 30413 TYPE Mexico OM732326
Tricholoma colposii J. Pérez-Moreno, M. Martínez-Reyes M. & O. Ayala-Vásquez O. MEXU 30414 Mexico OM732327
Tricholoma colposii J. Pérez-Moreno, M. Martínez-Reyes M. & O. Ayala-Vásquez O. MEXU 30415 Mexico OM732328
Tricholoma colposii J. Pérez-Moreno, M. Martínez-Reyes M. & O. Ayala-Vásquez O. MEXU 30416 Mexico OM732329
Tricholoma dulciolens Kytöv. H: 7002022 TYPE Sweden AB738883
Tricholoma forteflavescens Reschke, Popa, Zhu L. Yang & G. Kost HKAS: 93511 TYPE China NR_160587
Tricholoma fulvocastaneum Hongo CMU 25007 Thailand DQ067895
Tricholoma fulvocastaneum Hongo TN6941 Japan AB289668
Tricholoma ilkkae Mort. Chr., Heilm.-Claus., Ryman & N. Bergius UPS: F-513823 TYPE Sweden NR_159051
Tricholoma magnivelare (Peck) Redhead Ich Mexico AF309525
Tricholoma magnivelare (Peck) Redhead Ich Mexico AF309527
Tricholoma magnivelare (Peck) Redhead ICh Ixtepeji Mexico AF309531
Tricholoma magnivelare (Peck) Redhead ICh San Andres Mexico AF309530
Tricholoma magnivelare (Peck) Redhead NYS f2421 TYPE USA LT220177
Tricholoma matsutake (S. Ito & S. Imai) Singer ATCC 64715 Japan AF309536
Tricholoma matsutake (S. Ito & S. Imai) Singer NBRC: 6932 Japan AB699626
Tricholoma matsutake (S. Ito & S. Imai) Singer Y1 Japan AB036890
Tricholoma mesoamericanum Justo & Cifuentes Bandala 4461 Mexico OL813480
Tricholoma mesoamericanum & Cifuentes Bandala 4462 Mexico OL813481
Tricholoma mesoamericanum & Cifuentes Bandala 4463 Mexico OL813482
Tricholoma mesoamericanum & Cifuentes Bandala 4465 Mexico OL813483
Tricholoma mesoamericanum & Cifuentes Bandala 4466 Mexico OL813484
Tricholoma mesoamericanum & Cifuentes César 131 Mexico OL813485
Tricholoma mesoamericanum & Cifuentes César 140 Mexico OL813486
Tricholoma mesoamericanum & Cifuentes César 152 Mexico OL813487
Tricholoma mesoamericanum & Cifuentes César 180 Mexico OL813488
Tricholoma mesoamericanum & Cifuentes JLF7803 USA OL810985
Tricholoma mesoamericanum & Cifuentes Mata 951 Mexico OL813489
Tricholoma mesoamericanum & Cifuentes Montoya 4769 Mexico OL813490
Tricholoma mesoamericanum & Cifuentes Montoya 5437 Mexico OL813491
Tricholoma mesoamericanum & Cifuentes Tricholoma mesoamericanum & Cifuentes USA MK301255
Tricholoma mesoamericanum & Cifuentes Ramos 738 Mexico OL813492
Tricholoma mesoamericanum & Cifuentes FCME: 21585 TYPE Mexico KX037037
Tricholoma mesoamericanum & Cifuentes FCME: 21585 TYPE Mexico MN088531
Tricholoma mesoamericanum & Cifuentes FCME: 21585 TYPE Mexico NR_166291
Tricholoma murrillianum Justo & Cifuentes NY 586560 TYPE USA LT220179
Tricholoma murrillianum Singer SAT-16-319-01 EPITYPE USA KY660032
Tricholoma murrillianum Singer TR85 USA KX037030
Tricholoma olivaceum Reschke, Popa, Zhu L. Yang & G. Kost HKAS: 93513 TYPE China NR_160588
Tricholoma rapipes (Krombh.) Heilm.-Claus. & Mort. Chr. MC98-106 TYPE France LT000085
Tricholoma sp. Mex1 Mexico AB510472
Tricholoma sp. MX1 Mexico AB699647
Tricholoma sudum (Fr.) Quél. MC98-601 TYPE Denmark LT000051

Phylogenetic analyses

Phylogenetic trees were generated following the method of Montoya et al. (2019a). A dataset, using PhyDE v. 0.9971 (Müller et al., 2010) was constructed with the sequences obtained in this study, together with sequences of taxa related to Sect. Caligata Konrad & Maubl. ex Bon from GenBank (Benson et al., 2017). The dataset was aligned with MAFFT online service (Katoh et al., 2019) and inconsistencies were corrected manually. The evolutionary model was calculated using the IQ-Tree v. 2.1.1 package (Nguyen et al., 2015; Kalyaanamoorthy et al., 2017; Minh et al., 2020) and the best-fitting model was selected using the Bayesian Information Criterion (BIC), the Akaike Information Criterion (AIC) and corrected AIC. This later was used to generate a phylogenetic tree in IQTree v. 2.1.1 with the Maximum Likelihood (ML) method, with a Nearest Neighbour Interchange (NNI) heuristic, with the HKY+F+G4 evolutionary model. A consensus tree by ML and another phylogenetic tree by Bayesian Inference (BI), using MrBayes v. 3.2.7 (Ronquist et al., 2012) were also generated according to Montoya et al. (2019a). The phylogenies from ML and BI analyses were displayed using FigTree v. 1.4.4 (Rambaut, 2018) and whose topologies were similar and consistent. In the phylogeny from ML analyses of figure 1, only bootstrap values (BS) of ≥70% and Bayesian posterior probabilities (BPP) of ≥0.90 were considered and indicated on the tree branches (BS/BPP).

Results

A total of 13 ITS sequences obtained from the freshly collected basidiomes were used to perform phylogenetic analysis together with sequences downloaded from GenBank (Table 1). The pre-existing Mexican samples labeled as T. mesoamericanum (including the type collection), T. colposii (including the type collection), and “T. magnivelare” along with those studied here, form a clade sister to T. matsutake, the T. magnivelare type specimen, and T. anatolicum H.H. Doğan & Intini (Fig. 1), which strongly supports that all Mexican collections represent T. mesoamericanum. This result also informs about the wide morphological variation exhibited by basidiomes of this species in color and macro- and micromorphological features. Interestingly, two sequences from specimens collected in conifer forests in Coconino and Cochise counties, Arizona, USA and deposited in GenBank (Table 1, Fig. 1), were also recovered in the T. mesoamericanum clade, indicating that the distribution of the species extends beyond Mexico.

Figure 1: Phylogenetic relationships within Tricholoma (Fr.) Staude species inferred from ITS rDNA sequences, by maximum likelihood method. The new sequences generated here are indicated in bold. Bootstrap scores (≥70) and Bayesian Posterior Probabilities (≥0.90) are indicated above the branches. 

Taxonomy

Tricholoma mesoamericanum & Cifuentes , Mycologia 109: 385. 2017.Figs. 2, 3, 4.

Figure 2: Tricholoma mesoamericanum & Cifuentes basidiomes A, B, F. L. Montoya 4769 (XAL); C. V.M. Bandala 4461 (XAL); D-E. V.M. Bandala 4465 (XAL); G. L. Montoya 5437 (XAL). Bars: A-C = 20 mm, D-G = 10 mm. 

Figure 3: Microscopic features of Tricholoma mesoamericanum Justo & Cifuentes. A, B. basidiospores (A. L. Montoya 4769 (XAL); B. E. César 131 (XAL)); C. basidia; D-E. cheilocystidia-like elements of lamellae edge (C-E. L. Montoya 4769 (XAL)). Bars: A-B = 5 μm, C-E = 10 μm. 

Figure 4: Tricholoma mesoamericanum & Cifuentes pileipellis. A. E. César 131 (XAL); B. L Montoya 4769 (XAL). Bars: 25 µm. 

TYPE: MEXICO. Oaxaca, Ixtlán de Juárez, north of “Rancho de Los Torres.” 1.VIII.2005, Cifuentes 2005-130 (holotype: FCME 21585). Gene sequences ex-holotype: ITS KX037037.

= Tricholoma colposii J. Pérez-Moreno, M. Martínez-Reyes M. & O. Ayala-Vásquez O., Phytotaxa 542(1): 27. 2022.

= Tricholoma magnivelare (Peck) Redhead, Trans. Mycol. Soc. Japan 25(1): 6. 1984. auct. Mex.: Montoya-Bello et al. (1987); Villarreal and Pérez-Moreno (1989); Bandala et al. (1997); Martínez-Carrera et al. (2002); Jarvis et al. (2004); Zamora-Martínez and Nieto de Pascual-Pola (2004); Edouard et al. (2006); Pérez-Moreno et al. (2008); Gaitán (2012).

Iconography: Villarreal and Pérez-Moreno (1989: 134, Fig. 1; 142, Fig. 7); Martínez-Carrera et al. (2002: 34, Figs. 7-8); Edouard et al. (2006: 55, Fig. 3.13); Trudell et al. (2017: 384, Fig. 2d-e); Ayala-Vázquez et al. (2022: 28, Fig. 2); Clements and Fulton (2022); Frank (2022).

Pileus (18-)35-110 mm diam., primordia subhemispheric, expanding to convex, plane-convex when mature, slightly broadly umbonate or slightly depressed in some mature specimens, lubricous to dry, surface soft, hygrophanous, silky or shiny, mostly with compact cuticle at pileus center, innate fibrillose towards margin, sometimes with a squarrose appearance, forming flat innate squamules with a tendency to be disposed in radial arrangement or towards the margin, the edge of those squamules at times lifted; surface in the primordia dull, ivory white to dirty cream, with yellow, greyish-yellow or yellow-brown tinges (4A4; 2.5Y 8/2-4, 10YR 7/6), darker in some areas (4B4-5), others pale ochraceous (6C5; 10YR 6-7/6), pinkish-brown (10YR 7/3, 8/2) or even darker (6C6; 7.5 YR 5/3); mature specimens whitish, with yellowish-cream (4A3-A2; 2.5Y 8/3-2) or yellowish-ochraceous (10YR 7/6) areas over a whitish background, or some areas with brownish-orange (5B6), flesh (7.5YR 7/3-4), or reddish-brown (5YR 4/4) tinges; in more mature specimens, irregularly beige, with brownish (6D5-E6), pinkish or reddish, dark flesh (7.5YR 3-4/4), orange-brown (5B5, 5C6; 10YR4/6) or brownish tinges, at the center of the disc becoming orange-brown (7.5 YR 4/6) with dark vinaceous-brown tinges (5YR 3/3); cuticle lifting easily and showing the white context; squamules developing gradually pinkish-brown or reddish-brown (5YR 3/4), orange-brown (6E8; 5YR4/6) or brown-vinaceous (7B6, 7D7-8, 7E8; 2.5YR 3/6, 5/4, 4/3-4) tinges over a cream yellow ground (2.5Y 8/3-4); margin membranous, involute, decurved, squarrose, edge tomentose, even or appendiculate with veil remnants; veil a cover extending from the stipe base, the primordia entirely covered, at times somewhat gelatinous to the touch, membranous, even elastic, external surface fibrous, yellowish-white to cream color or whitish, beige yellowish to ochraceous (10YR 7/6), concolorous with stipe surface or darker brown due to the adhesion of soil or debris; in mature specimens only with remnants or hanging inversely from the stipe as a partial subapical veil, fixed, simple, membranous-squamous, interior tomentose, as the pileus expands becoming ragged, fibrillose, in some even fibrillose arachnoid, with the same colors of the stipe surface or darker brown due to the adhesion of soil or debris and yellowish in the inner surface; lamellae adnate to sinuate, when pileus expands the lamellae can be detached from the stipe or develop a tooth, close to crowded, undulate, narrow, 2-6 (-8) mm width, of different width in a same basidiome, edge not fimbriate, sinuous, with a tendency to wrinkle, some bifurcate, ivory with some pinkish reflections (paler than 10YR 8/2), white, whitish-cream (paler than 4A2) unstained, thin, somewhat leathery, with lamellulae of at least three tiers, 0-2 between two lamellae; margin rugose, more whitish and thinner; stipe 40-80 × 15-40 mm, subcylindrical, equal, tapering downwards, sinuous, central or eccentric, fleshy fibrous, solid, frequently hollow, primordia covered by an innate veil, this with the same colors as the stipe surface, the surface of the stipe when mature pruinose at apex, the remaining surface innately fibrillose and adpressed squamulose, at times squarrose or even with leopardine appearance, dry, fibrous, white especially towards the apex, some pale grayish-brown areas (5CD5), squamules amber-brown (6C7; 10YR 6/6-8), pinkish-brown (7.5YR4-5/4), below the ring yellowish or concolorous with pileus (nearly 10 YR 8/4), pale ochraceous-orange or darker (7.5YR 4/4, 5/6; 10YR 4-5/6) over the cuticle, not detachable as that of the pileus, somewhat lubricous or sticky, base with abundant rhizomorphs; context of pileus fleshier than the stipe, more fibrous towards the stipe, easily disentangled in fibrous elements as cooked chicken breast, white, unchanging; odor intense, fragrant, agreeable, spicy, somewhat Pelargonium-like, or pine resin, or with sweetish cinnamon to chocolate notes; taste resembling pine nuts, very pleasant; basidiospores (5-) 5.5-9 × 4-6 (-6.5) µm, X̅ = 6.1-7.3 × 4.5-5.4 µm; Q̅ = 1.31-1.50, broadly ellipsoid, hyaline, smooth, thin-walled, inamyloid; basidia 31-52 × 5-9 μm, mostly 4-spored, but 1-3-spored frequent, clavate, hyaline, thin-walled, smooth; pleurocystidia absent; cheilocystidia-like elements (14-) 21-47 (-53) × 3-8 µm, cylindrical, sinuous, slightly tortuous, frequent, at times ampullaceous or even bifurcate at apex, thin-walled, hyaline, smooth; pileipellis a somewhat gelatinized cutis, compact, composed of cylindrical hyphae, 3-9 µm diam., hyaline to pale-yellowish, at times with yellowish contents, yellowish in group, thin-walled, smooth, rarely forming small squamules; pileus context regular to subregular, hyphae 6-20 (-25) diam., cylindrical to inflated, hyaline, smooth, thin walled (˂1 µm), some with yellowish oil content; lamellae trama regular, hyphae 7-19 µm diam, cylindrical to inflated, hyaline, thin walled, hyaline, smooth; stipitipellis in cutis, with hyphae compactly arranged, ungelatinized, pale yellow in group, cylindrical, 4-12 µm diam., hyaline, but dextrinoid after some minutes in Melzer reagent , thin-walled; stipe context, subcompact to compact, hyphae irregular to regularly interwoven, hyaline, 4-6 µm diam., some 8-12 µm, thin-walled; veil with subcylindrical to subventricose, hyaline, inamyloid, ungelatinized, thin-walled hyphae 6-15 µm diam., loosely and irregularly arranged.

Habit and habitat: on soil, solitary, scattered or in small groups, basidiomes often arising partially or totally covered by pine needles, in conifer forests under pines, especially P. pseudostrobus and P. montezumae.

Material examined: MEXICO. Puebla, municipality Tlatlauquitepec, ejido Gómez - Tepeteno, 4.XI.2009, V. M. Bandala 4461 (XAL), 4462 (XAL), 4463 (XAL), 4465 (XAL), 4466 (XAL). Veracruz, municipality Las Vigas, San Juan del Monte, 29.VIII.2018, E.César 131 (XAL); loc. cit., 12.IX.2018, E. César 140 (XAL); loc. cit., 22.X.2009, L. Montoya 4769 (XAL). Municipality of Perote, Ejido 20 de Noviembre, 5.X.1983, S. Chacón 1727A (XAL). Municipality of Xalapa, Alcalde y García Market, 9.VIII.2018, D. Ramos 738 (XAL); loc. cit., 15.XI.2018, E. César 180 (XAL); loc. cit., 20.IX.2018, E. César 152 (XAL); loc. cit., 8.IX.2016, G. Mata 951 (XAL); loc. cit., 2.VIII.2018, L. Montoya 5437 (XAL).

Distribution: in Mexico this species has a wide distribution through the states of Chihuahua, Durango, Guerrero, Hidalgo, México, Michoacán, Oaxaca, Puebla, and Veracruz. In the United States of America (USA) it is known from the state of Arizona.

Remarks: the pileus of fresh specimens studied here acquired brownish-orange, even reddish-brown or dark vinaceous brown tinges, with a decidedly squarrose appearance, with the edge of the squamules becoming lifted and notably developing brownish or even reddish-brown colors. The lamellae were yellowish white or yellowish cream at times with faint pinkish tinges, contrary to the white, spotted brown in age lamellae described by Trudell et al. (2017). Microscopically the basidiospores of studied specimens are somewhat larger than those reported by Trudell et al. (2017) (4.5-6.5 × 3.5-4.5 μm), the basidia are 4-spored (31-52 × 5-9 µm vs. 22-38 × 4.5-6.5 μm), with 1-3 frequent sterigmata, and exhibiting cheilocystidia-like sterile elements. All these variants of the basidiomes, together with the records in the literature in Mexico (under “T. magnivelare”), show that T. mesoamericanum has a moderately extensive range in color, combined with details of its pileus/stipe surfaces, and its macro- and microscopic morphological features. Basidiomes supporting T. colposii, recently described from Mexico (Cofre de Perote in Veracruz), show a similar set of macro- and micromorphological features, that in fact, since T. mesoamericanum and T. colposii are molecularly related, would be the morphological variation expected to be exhibited by a single taxon. Tricholoma colposii was morphologically characterized by “…middle size basidiomata, with orange brown to brown pileus and stipe, squamose when young and with appressed scales in maturity, cylindrical, fibrillose to scaly stipe, with globose to ellipsoid (4.5-) 5-6 (-7) × (3-) 4-5 (-6) μm smooth spores, sweet fruit odor …” (Ayala-Vásquez et al., 2022). Important information on the macroscopic variation of the basidiomes is also provided by the images of the specimens found in Arizona by Clements and Fulton (2022), and Frank (2022), where the lamellae and ornamentation of pileus and stipe and their colors are shown in detail. Based on our molecular analyses, we observe a discrepancy with the results on T. colposii by Ayala-Vásquez et al. (2022). In the latter research it was reported that after a BLAST analysis, they obtained a similarity percentage of 94% between a single sequence (of four) of ITS (668 bp) of T. colposii with T. mesoamericanum. However, our BLAST analysis showed a rank of similarity percentage of 99.66-99.82% among the four sequences of T. colposii by Ayala-Vásquez et al. (2022) with the type of T. mesoamericanum, and 100% similarity percentage with one sequence identified as T. matsutake from Mexico (AB036891). Furthermore, in the phylogeny obtained in such research, T. colposii appears in a well-supported clade, on a relatively long branch, as sister to T. mesoamericanum, which is not consistent with the great similarity among the sequences, observed through BLAST analysis. Our results show in fact a different tree topology and BS/BPP values, that prevent support for the proposal of T. colposii as an independent taxon.

The scaly aspect of the basidiomes of Tricholoma mesoamericanum may recall to some stages of development of T. magnivelare or even some similarity with T. matsutake. However, the latter two species are molecularly distant from T. mesoamericanum. The American T. magnivelare does not develop reddish or vinaceous colors on the pileus surface, or in the squamules, and its lamellae appear spotting or bruising reddish-brown with age (vs. unstaining in T. mesoamericanum). The pileus of T. matsutake was described with sepia tones, disk becoming tawny, russet or even developing darker tinges (dark brown), broader lamellae (10-12 mm) and shorter basidiospores (3-8 × 3-6 μm) (Zeller and Togashi, 1934).

Discussion

In their attempt to define the presence and geographic distribution of phylogenetic groupings within the core of species around T. matsutake, Chapela and Garbelotto (2004) recognized a separation between sequences of T. magnivelare from the eastern USA and those from central (Estado de Mexico) and southern Mexico (Guerrero and Oaxaca) that formed a closely but distinct clade. The separation between T. magnivelare and the specimens from Mexico potentially representing a different taxon was also recognized by other authors that referred to it as “Tricholoma sp.” (Yamada et al., 2010; Ota et al., 2012; Murata et al., 2013). With the four ITS sequences of specimens from Oaxaca, Guerrero and Estado de Mexico (Table 1), including a new one of the specimen FCME 21585 (KX037037) from Oaxaca and one from an isolate of unknown provenance in Mexico (AB699647 by Ota et al., 2012) (Table 1), Trudell et al. (2017) supported their proposal of T. mesoamericanum as a distinct species, being the only one of the three matsutake species in North America known to occur in Mexico. The other two are T. murrillianum from the western USA/Canada, and T. magnivelare from the eastern USA/Canada. The phylogeny obtained here with the 13 ITS sequences from fresh specimens studied, together with sequences of T. mesoamericanum available in GenBank (type specimen FCME 21585 included) (Table 1) yielded consistency in the clade T. mesoamericanum, in congruence with previous aforementioned studies, where the sequences that give support to T. colposii from Mexico are strongly embedded, suggesting that the specimens of it display part of the macro-microscopic variation belonging to a same species. Therefore, T. colposii is reduced to a synonym of T. mesoamericanum.

The results suggest that the Mexican species is found geographically separated from its close relatives and in ecosystems with different phytobiont complexes. Evidently, there are still few collections and explorations that have not been carried out in the areas where the different species could co-occur. Tricholoma mesoamericanum is present in the states of Chihuahua, Durango, Guerrero, Hidalgo, Mexico, Michoacán, Oaxaca, Puebla, and Veracruz, showing a western tendency in its distribution along the Sierra Madre Occidental and having a central west-east distribution almost following or around the Trans-Mexican Volcanic Belt (Fig. 5). Among the matsutake group, T. murrillianum is recognized to occur in the western USA and Canada, with some records in southern California (Trudell et al., 2017). Based on ITS sequences analyzed here, it is found that T. mesoamericanum extends into Arizona (central and southeastern) in the fragmented forest cover of the extreme north of the Mexican Sierra Madre Occidental, probably representing the northwestern limit of T. mesoamericanum (Fig. 5), possibly coexisting with T. murrillianum in the California-Arizona region. The basidiomes being whiter and becoming less scaly would distinguish T. murrillianum from T. mesoamericanum. In Arizona, T. mesoamericanum has been found under Pinus ponderosa Douglas ex C. Lawson (ponderosa pine), Pinus strobus L. (white pine), Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Quercus gambelii Nutt. (gambel oak). In Mexico, the species in the sampled areas occurs with Pinus ayacahuite, P. montezumae, P. patula and P. pseudostrobus, but in other areas of the country it has been observed in forests of pines or mixed pines-oaks close to trees of Pinus teocote Schlecht & Cham., P. douglasiana Martínez, P. leiophylla Schiede & Deppe, P. patula var. longepedunculata Loock ex Martínez, P. rudis Endl., and P. oaxacana Mirov. with presence of Quercus crassifolia Née, Q. laurina Humb. et Bonpl., Q. conzattii Trel., Q. rugosa Née, and Q. scytophylla Liebm., and occasionally with trees of Abies religiosa (Kunth) Schltdl. & Cham. (Villarreal and Pérez-Moreno, 1989; Martínez-Carrera et al., 2002; Zamora-Martínez and Nieto de Pascual-Pola, 2004; Trudell et al., 2017). Additional to what Sandor et al. (2020) mentioned, the matsutake populations not yet sequenced, especially those collected in the North of the country, deserve to be analyzed to confirm their position in the phylogeny.

Figure 5: Distribution of Tricholoma mesoamericanum Justo & Cifuentes. Points represent an approximation of known areas of the species occurrence. 

Conclusions

Tricholoma mesoamericanum is until now the only species of the T. matsutake group that has been recorded in Mexico, having as synonym the Mexican T. colposii. Currently there is no evidence that T. magnivelare occurs in Mexico.

We confirmed the sale of T. mesoamericanum in Xalapa city, through the collections bought in the market Alcalde y García, an important traditional point of sale of mushrooms in the region for people coming from rural areas near the city. We have confirmed through personal communication with the sellers that the mushroom offered in the market is collected in the Cofre de Perote area.

After more than three decades subsequent to the first record of a matsutake species in Mexico (Montoya-Bello et al., 1987), it was evident that the commercialization of this fungus has enriched the economy of the collectors from that region. In fact, other edible mushrooms fetched higher prices and, as discussed above, a new sales structure also emerged. However, the effects of the exponential growth of collection and sale have not been evaluated by studies on the status of fungal populations combined also with research on the state of conservation and sustainability of forests. These studies are necessary to promote measures in favor of sustainable development and a fair remuneration for the local inhabitants involved in the management of matsutake mushrooms.

Acknowledgements

Assistance in the field and laboratory was provided by P. V. Susan (Instituto de Ecología, A.C.) who also assisted us with some molecular procedures.

Literature cited

Ayala-Vásquez, O., M. Martínez-Reyes, J. I. de la Fuente, C. R. Martínez-González, L. Flores Armas, F. Hernández-Santiago and J. Pérez-Moreno. 2022. Tricholoma colposii (Tricholomataceae, Basidiomycota), a new edible species of matsutake fungi from Eastern Mexico with economic and biocultural importance. Phytotaxa 542(1): 24-34. DOI: https://doi.org/10.11646/phytotaxa.542.1.2 [ Links ]

Bandala, V. M., L. Montoya and I. Chapela. 1997. Wild edible mushrooms in Mexico: a challenge and opportunity for sustainable development. In: Palm, M. E. and I. Chapela (eds.). Mycology in Sustainable Development: Expanding concepts, vanishing borders. Parkway Publishers. North Carolina, USA. Pp. 76-90. [ Links ]

Bandala, V. M. , L. Montoya, R. Villegas, T. Cabrera, M. J. Gutiérrez and T. Acero. 2014. “Nangañaña” (Tremelloscypha gelatinosa, Sebacinales), hongo silvestre comestible del bosque tropical deciduo en la depresión central de Chiapas, México. Acta Botanica Mexicana 106: 149-159. DOI: https://doi.org/10.21829/abm106.2014.216 [ Links ]

Benson, D. A., M. Cavanaugh, K. Clark, L. Karsch-Mizrachi, D. J. Lipman, J. Ostell and E. W. Sayers. 2017. GenBank. Nucleic Acids Research 45(D1): D37-D42. DOI: https://doi.org/10.1093/nar/gkw1070 [ Links ]

César, E., V. M. Bandala, L. Montoya and A. Ramos. 2018. A new Gymnopus species with rhizomorphs and its record as nesting material by birds (Tyrannideae) in the subtropical cloud forest from eastern Mexico. MycoKeys 42: 21-34. DOI: https://doi.org/10.3897/mycokeys.42.28894 [ Links ]

Chapela, I. H. and M. Garbelotto. 2004. Phylogeography and evolution in matsutake and close allies inferred by analyses of ITS sequences and AFLPs. Mycologia 96(4): 730-741. DOI: https://doi.org/10.1080/15572536.2005.11832921 [ Links ]

Clements, T. and D. Fulton. 2022. Observación 329679: Tricholoma mesoamericanum Justo & Cifuentes. https://mushroomobserver.org/329679 (consulted October, 2022). [ Links ]

De Crop, E., J. Nuytinck, K. Van de Putte, K. Wisitrassameewong, J. Hackel, D. Stubbe, K. D. Hyde, M. Roy, R. E. Halling, P. A. Moreau, U. Eberhardt and A. Verbeken. 2017. A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus. Persoonia 38: 58-80. DOI: https://doi.org/10.3767/003158517X693255 [ Links ]

Dubovoy, C. 1968. Conocimiento de los hongos en el México antiguo. Boletín Informativo de la Sociedad Mexicana de Micología 2: 16-24. [ Links ]

Edouard, F., R. Quero and E. Marshall. 2006. Hongos silvestres Boletus edulis, Cantharellus cibarius, Amanita caesarea, Tricholoma magnivelare (Basidiomycetes) hongos frescos, deshidratados y de exportación: negocio comunitario y emprendedores. In: Marshall, E., K. Schreckenberg and A. C. Newton (eds.). Comercialización de productos forestales no maderables factores que influyen en el éxito, conclusiones del Estudio de México y Bolivia. Centro Mundial de Vigilancia de la Conservación del PNUMA (Programa de las Naciones Unidas para el Medio Ambiente) (UNEP-WCMC). Cambridge, UK. Pp. 54-57. [ Links ]

Frank, J. 2022. Tricholoma mesoamericanum. iNaturalist. https://www.inaturalist.org/observations/102827627 (consulted ctober, 2022). [ Links ]

Fuentes-Moreno, H., A. Trejo-Ortíz and F. A. Cervantes. 2017. Los mamíferos del Área Reservada para la Recreación y Educación Ecológica San Juan del Monte, Las Vigas de Ramírez, Veracruz, México. Revista Mexicana de Biodiversidad 88: 978-984. DOI: https://doi.org/10.1016/j.rmb.2017.10.031 [ Links ]

Gaitán, R. 2012. Especies de hongos comestibles, recurso genético nativo para la generación de una alternativa productiva en México. In: Carreón, Y., P. Mendoza and M. P. Rodríguez. Los microorganismos y su importancia biotecnológica y ecológica. Subsistema Nacional de Recursos Genéticos Microbianos, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA), Universidad Michoacana de San Nicolás de Hidalgo. Morelia, México. Pp. 55-58. [ Links ]

Gardes, M. and D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2): 113-118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x [ Links ]

Guzmán, G. and L. Villarreal. 1984. Estudios sobre los hongos, liqúenes y mixomicetos del Cofre de Perote, Veracruz. I: Introducción a la mico-flora de la región. Boletín de la Sociedad Mexicana de Micología 19: 107-112. [ Links ]

Herrera, T. and G. Guzmán. 1961. Taxonomía y ecología de los principales hongos comestibles de diversos lugares de México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica 32: 33-135. [ Links ]

Jarvis, M. C., A. M. Miller, J. Sheahan, K. Ploetz, J. Ploetz, R. R. Watson, M. Palma Ruiz, C. A. Pascario Villapan, J. García Alvarado, A. López Ramírez and B. Orr. 2004. Edible wild mushrooms of the Cofre de Perote region, Veracruz, Mexico: An ethnomycological study of common names and uses. Economic Botany 58: S111-S115. DOI: https://doi.org/10.1663/0013-0001(2004)58%5bs111:ewmotc%5d2.0.co;2 [ Links ]

Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler and L. S. Jermiin. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589. DOI: https://doi.org/10.1038/nmeth.4285 [ Links ]

Katoh, K., J. Rozewicki and K. D. Yamada. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. DOI: https://doi.org/10.1093/bib/bbx108 [ Links ]

Kornerup, A. and J. H. Wanscher. 1978. Methuen handbook of colour. 3rd ed. Eyre Methuen. London, UK. 252 pp. [ Links ]

Li, Q., L. Zhang, W. Li, X. Li, W. Huang, H. Yang and L. Zheng. 2016. Chemical compositions and volatile compounds of Tricholoma matsutake from different geographical areas at different stages of maturity. Food Science and Biotechnology 25(1): 71-77. DOI: https://doi.org/10.1007/s10068-016-0010-1 [ Links ]

Martínez-Alfaro, M. A., E. Pérez-Silva and E. Aguirre-Acosta. 1983. Etnomicología y exploraciones micológicas en la Sierra Norte de Puebla. Boletín de la Sociedad Mexicana de Micología 18: 51-63. [ Links ]

Martínez-Carrera, D., P. Morales, E. Pellicer-González, H. León, A. Aguilar, P. Ramírez, P. Ortega, A. Largo, M. Bonilla and M. Gómez. 2002. Studies on the traditional management, and processing of matsutake mushrooms in Oaxaca, Mexico. Micología Aplicada International 14(2): 25-43. [ Links ]

Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler and R. Lanfear. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 37(5): 1530-1534. DOI: https://doi.org/10.1093/molbev/msaa015 [ Links ]

Montoya, L., V. M. Bandala and G. Guzmán. 1996. New and interesting species of Lactarius from Mexico, including scanning electron microscope observations. Mycotaxon 57: 411-424. [ Links ]

Montoya, L. , A. Caro, A. Ramos and V. M. Bandala . 2019a. Two new species of Lactifluus (Fungi, Russulales) from tropical Quercus forests in eastern Mexico. MycoKeys 59: 27-45. DOI: https://doi.org/10.3897/mycokeys.59.38359 [ Links ]

Montoya, L. , A. Caro, A. Ramos and V. M. Bandala . 2019b. Two new species of Phylloporus (Fungi, Boletales) from tropical Quercus forests in eastern Mexico. MycoKeys 51: 107-123. DOI: https://doi.org/10.3897/mycokeys.51.33529 [ Links ]

Montoya-Bello, L., V. M. Bandala-Muñoz and G. Guzmán. 1987. Nuevos registros de hongos del Estado de Veracruz, IV Agaricales II (con nuevas colectas de Coahuila, Michoacán, Morelos y Tlaxcala). Revista Mexicana de Micología 3: 83-107. [ Links ]

Montoya-Esquivel, A., O. Hernández-Totomoch, A. Estrada-Torres, A. Kong and J. Caballero. 2003. Traditional knowledge about mushrooms in a Nahua community in the state of Tlaxcala, México. Mycologia 95(5): 793-806. DOI: https://doi.org/10.1080/15572536.2004.11833038 [ Links ]

Müller, J., K. Müller, C. Neinhuis and D. Quandt. 2010. PhyDE - Phylogenetic Data Editor, version 0.9971. Program distributed by the author. http://www.phyde.de (consulted September, 2022) [ Links ]

Munsell. 1994. Munsell soil color charts. Macbeth: New Windsor. New York, USA. 4 Pp. + 9 color charts. [ Links ]

Murata, H., Y. Ota, A. Yamada, A. Ohta, T. Yamanaka and H. Neda. 2013. Phylogenetic position of the ectomycorrhizal basidiomycete Tricholoma dulciolens in relation to species of Tricholoma that produce “matsutake” mushrooms. Mycoscience 54(6): 438-443. DOI: https://doi.org/10.1016/j.myc.2013.02.003 [ Links ]

Nguyen, L. T., H. A. Schmidt , A. von Haeseler andB. Q. Minh . 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268-274. DOI: https://doi.org/10.1093/molbev/msu300 [ Links ]

Ota, Y., T. Yamanaka, H. Murata, H. Neda, A. Ohta, M. Kawai, A. Yamada, M. Konno and Ch. Tanaka. 2012. Phylogenetic relationship and species delimitation of matsutake and allied species based on multilocus phylogeny and haplotype analyses. Mycologia 104(6): 1369-1380. DOI: https://doi.org/10.3852/12-068 [ Links ]

Pérez-Moreno, J., M. Martínez-Reyes, A. Yescas-Pérez, A. Delgado-Alvarado and B. Xoconostle-Cázares. 2008. Wild Mushroom Markets in Central Mexico and a Case Study at Ozumba. Economic Botany 62: 425-436. DOI: https://doi.org/10.1007/s12231-008-9043-6 [ Links ]

Rambaut, A. 2018. FigTree version 1.4.4 software. Program distributed by the author. Institute of Evolutionary Biology, University of Edinburgh. Edinburgh, UK. http://tree.bio.ed.ac.uk/software/figtree/ (consulted September, 2022). [ Links ]

Redhead, S. A. 1984. Mycological observations 13-14: on Hypsizygus and Tricholoma. Transactions of the Mycological Society of Japan 25: 1-9. [ Links ]

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. DOI: https://doi.org/10.1093/sysbio/sys029 [ Links ]

Sandor, S. R., H. Wang, L. Vaario, S. A. Trudell and J. Xu. 2020. Mitochondrial multilocus DNA sequence analyses reveal limited genetic variability within and consistent differences between species of the global matsutake species complex. Acta Edulis Fungi 27(1): 1-19. DOI: https://doi.org/10.16488/j.cnki.1005-9873.2020.01.001 [ Links ]

Thiers, B. 2022. (continuously updated) Index Herbariorum: a global directory of public herbaria and associate staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih (consulted October, 2022). [ Links ]

Thiers, H. D. and J. Sundberg. 1976. Armillaria (Tricholomataceae, Agaricales) in Western United States, including a new species from California. Madroño 23: 448-453. [ Links ]

Trudell, S. A., J. Xu, I. Saar, A. Justo and J. Cifuentes. 2017. North American matsutake: names clarified and a new species described. Mycologia 109(3): 379-390. DOI: https://doi.org/10.1080/00275514.2017.1326780 [ Links ]

Villarreal, L. and G. Guzmán. 1985. Producción de los hongos comestibles silvestres en los bosques de México (Parte I). Revista Mexicana de Micología 1: 51-90. [ Links ]

Villarreal, L. and J. Pérez-Moreno. 1989. Aprovechamiento y conservación del matsutake americano (Tricholoma magnivelare) en los bosques de México. Micología Neotropical Aplicada 2: 131-144. [ Links ]

Wells, K. and F. Oberwinkler. 1982. Tremelloscypha gelatinosa, a species of a new family Sebacinaceae. Mycologia 74(2): 325-331. DOI: https://doi.org/10.2307/3792902 [ Links ]

Wen, X., F. Geng, Y. Xu, X. Li , D. Liu, Z. Liu and J. Wang. 2022. Quantitative transcriptomic and metabolomic analyses reveal the changes in Tricholoma matsutake fruiting bodies during cold storage. Food Chemistry 381: 132292. DOI: https://doi.org/10.1016/j.foodchem.2022.132292 [ Links ]

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., D. H. Gelfand, J. J. Sninsky and T. J. White (eds.). PCR protocols: a guide to methods and applications. Academic Press. San Diego, USA. Pp. 315-322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1 [ Links ]

Yamada, A., H. Kobayashi, H. Murata, E. Kalmiş, F. Kalyoncu and M. Fukuda. 2010. In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20: 333-339. DOI: https://doi.org/10.1007/s00572-009-0286-6 [ Links ]

Zamora-Martínez, M. C. and C. Nieto de Pascual-Pola. 2004. Studies of Tricholoma magnivelare in México. Micología Aplicada International 16(1): 13-23. [ Links ]

Zeller, S. M. and K. Togashi. 1934. The American and Japanese Matsu-Takes. Mycologia 26(6): 544-558. DOI: https://doi.org/10.1080/00275514.1934.12020746 [ Links ]

Author Contributions

VB, LM and EC conceived and designed the study. AR and LM performed the analyses. VB, LM, AR, EC and DR contributed to data acquisition and interpretation. VB, LM, EC wrote the manuscript with the help of AR. DR made the line drawings and plates composition. All authors contributed to the discussion, review, and approval of the final manuscript.

Funding

This study was funded by Consejo Nacional de Ciencia y Tecnología, Fondo Institucional de Fomento Regional para el Desarrollo Científico Tecnológico y de Innovación-Programas Nacionales Estratégicos (CF 263959) to AR, LM and VB

Received: July 08, 2022; Revised: September 19, 2022; Accepted: November 14, 2022; Published: December 05, 2022

4Author for correspondence: leticia.montoya@inecol.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License