SciELO - Scientific Electronic Library Online

 
 número130Diversidad de Orchidaceae en un área de la Sierra Madre Oriental en Tamaulipas, MéxicoGraptopetalum irmasoniae (Crassulaceae), una especie nueva de Oaxaca, México, y lectotipificación de G. macdougallii índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Acta botánica mexicana

versión On-line ISSN 2448-7589versión impresa ISSN 0187-7151

Act. Bot. Mex  no.130 Pátzcuaro  2023  Epub 02-Abr-2024

https://doi.org/10.21829/abm130.2023.2249 

Articles of investigation

Taxonomic composition and substrate affinity of conspicuous marine macroalgae of the Parque Nacional Arrecifes de Cozumel, Quintana Roo, Mexico

Composición taxonómica y afinidad por un sustrato de macroalgas marinas conspicuas del Parque Nacional Arrecifes de Cozumel, Quintana Roo, México

Anahi Carranza Ramirez1  2 
http://orcid.org/0009-0001-7371-2776

Laura Georgina Calva Benítez1 
http://orcid.org/0000-0003-4973-6388

María Luisa Núñez Resendiz1 
http://orcid.org/0000-0001-6587-2609

1Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Departamento de Hidrobiología, Apdo. postal 55-535, 09340 Cd. Mx., Mexico.


Abstract:

Background and Aims:

The reefs of the Parque Nacional Arrecifes de Cozumel constitute one of the main reef formations in Mexico. However, up to date phycofloristic studies that allow detecting changes in the phycofloristic composition or its affinity for some substrates are practically non-existent. Our aim was to determine the taxonomic composition of marine macroalgae present in the Parque Nacional Arrecifes de Cozumel, as well as realize their morphological descriptions and an analysis of their affinity with the substrate they colonize.

Methods:

The sampling was carried out in October and November 2018 by autonomous diving in 14 reefs of the Parque Nacional Arrecifes de Cozumel. Morphological observations were made using optical and stereoscopic microscopes. The taxonomic determination was made using specialized literature.

Key results:

Fourty-two taxa were determined: five Ochrophyta, 12 Rhodophyta and 25 Chlorophyta. The best-represented family for Ochrophyta was Dictyotaceae; for Rhodophyta, Ceramiaceae and Rhodomelaceae; and for Chlorophyta, Halimedaceae. New records for the Parque Nacional Arrecifes de Cozumel are described, including Lobophora guadeloupensis as a new record for Mexico. Additionally, four different substrates for the algae were identified: psammophytic (33%), epilithic (32%), epizoic (19%) and epiphytic (16%). The most diverse reefs were La Francesa (LF) and Santa Rosa (SR), whereas the least diverse were Chankanaab (CK) and Tormentos (TM).

Conclusions:

Although many of the previous records in the area were confirmed in the present study, the presence of 18 new records revealed, on the one hand, the lack of constant monitoring of the algal richness of the region, and on the other hand, the need for morphological descriptions or photographic references that allow contrasting the previous records with the current ones. Given the importance of the Parque Nacional Arrecifes de Cozumel, our results, in addition to offering updated information, represent a starting point for studies in conservation biology.

Key words: algae; Chlorophyta; diversity; Ochrophyta; Rhodophyta

Resumen:

Antecedentes y Objetivos:

Los arrecifes del Parque Nacional Arrecifes de Cozumel constituyen una de las principales formaciones arrecifales de México. Sin embargo, actualmente, son prácticamente inexistentes los estudios ficoflorísticos que permiten detectar cambios en la composición ficoflorística o su afinidad por algún sustrato. Por lo tanto, nuestro objetivo fue determinar la composición taxonómica de macroalgas marinas presentes en el Parque Nacional Arrecifes de Cozumel, así como realizar sus descripciones morfológicas y análisis de afinidad con el sustrato que colonizan.

Métodos:

Los muestreos se realizaron en octubre y noviembre de 2018 en 14 arrecifes del Parque Nacional Arrecifes de Cozumel, mediante buceo autónomo. Se realizaron observaciones morfo-anatómicas utilizando tanto microscopios ópticos como estereoscópicos. La determinación taxonómica se realizó a partir de literatura especializada.

Resultados clave:

Se determinaron 42 taxa: cinco Ochrophyta, 12 Rhodophyta y 25 Chlorophyta. La familia mejor representada para Ochrophyta fue Dictyotaceae; para Rhodophyta, Ceramiaceae y Rhodomelaceae; y para Chlorophyta, Halimedaceae. Se describen nuevos registros para el Parque Nacional Arrecifes de Cozumel incluyendo a Lobophora guadeloupensis como nuevo registro para México. Adicionalmente, se identificaron cuatro diferentes sustratos para las algas: psamofítico (33%), epilítico (32%), epizoico (19%) y epífito (16%). Los arrecifes más diversos fueron La Francesa (LF) y Santa Rosa (SR), y los menos diversos fueron Chankanaab (CK) y Tormentos (TM).

Conclusiones:

Aunque muchos de los registros previos en el área fueron confirmados en el presente estudio, la presencia de 18 nuevos registros reveló, por un lado, la falta de monitoreos constantes de la riqueza algal de la región, y, por otro lado, la necesidad de contar con descripciones morfológicas o referencias fotográficas que permitan contrastar los registros previos con los actuales. Dada la importancia del Parque Nacional Arrecifes de Cozumel, nuestros resultados, además de ofrecer información actualizada, representan un punto de partida para estudios en biología de la conservación.

Palabras clave: algas; Chlorophyta; diversidad; Ochrophyta; Rhodophyta

Introduction

The Mesoamerican Reef System (SAM) is the second largest barrier reef in the world, extending from the extreme north of the Yucatán Peninsula, Mexico, southwards through the waters of Belize, Guatemala, and northern Honduras (Rodríguez-Martínez et al., 2014). The Parque Nacional Arrecifes de Cozumel (PNAC), as a part of this, is located on the Cozumel Island, which is considered the reef system with the greatest biodiversity in the Greater Caribbean (Ardisson et al., 2011; DOF, 2015; Dutra et al., 2021). The importance of this area is multiple: from being one of the main reef formations in Mexico, having a great variety of flora and fauna and being the base of the island's tourism industry (Ardisson et al., 2011; DOF, 2015; Dutra et al., 2021).

Coral reefs are predominantly cemented by corals and coralline algae and are considered among the most productive and biologically diverse ecosystems in the world (Sheppard et al., 2009; Davin and Brannet, 2010), as they provide habitat for a wide range of marine species, among which macroalgae stand out for their abundance and commercial value (DOF, 2015; Núñez Resendiz et al., 2019; Pereira Cuni et al., 2023). In addition, the reefs are characterized by having a high rate of primary productivity, providing protection to the coast against waves and storms, and generating substantial income for the local community through tourism, which is why they are considered ecologically and economically very important ecosystems (Puyana, 2017; Secaira et al., 2017; Spalding et al., 2017; Zucconi et al., 2018; Hutchings et al., 2019).

Macroalgae are a fundamental component of the reef flora, since they are not only the main primary producers, but also because they influence the balance of oxygen and carbon dioxide, and contribute macro and micronutrients to the surrounding environment (Se-Kwon, 2012). For this reason, phycofloristic knowledge not only favors the realization of regional inventories, but also allows, in the long term, to establish any trend or change that indicates a threat to coral communities, as well as its use in monitoring and conservation works (Pellizzari et al., 2014; González and Torruco, 2015; Núñez Resendiz et al., 2019).

On the Cozumel Island, important investigations have been carried out focused on the knowledge of the phycofloristic diversity of the area (Reyes-Bonilla, 2011; Valadez et al., 2014; Acosta-Calderón et al., 2016; Loreto Viruel et al., 2017). Particularly noteworthy are the studies by Mateo-Cid and Mendoza-González (1991), who record the reproductive status, tidal level, and distribution of the island's benthic marine algae in the intertidal zone, as well as those by Mendoza-González et al. (2000) and Mateo-Cid et al. (2006), in which the phycofloristic diversity of the subtidal zones of the PNAC is concentrated. The results of this research, in turn, were integrated together with records of marine algae from Cozumel, from 1958 to 2006, in the work of Mateo-Cid and Mendoza-González (2007). However, despite the importance of these contributions to the knowledge of the diversity of the PNAC, no phycofloristic studies have been carried out that include morphological descriptions. Consequently, in some cases it is not possible to contrast new information with these works, generating underestimation or overestimation of the species richness (Núñez Resendiz et al., 2019; García-García et al., 2020, 2021).

In general, there are few phycofloristic contributions in Mexico that report the types of substrates to which each species presents proliferation affinities (Garduño-Solórzano et al., 2005; Sánchez-Molina et al., 2007; Patiño-Espinosa et al., 2022). However, this is a relevant aspect for the characterization of reef zones that are constituted of species with preferences for certain types of substrates that determine their presence, absence, or abundance (Hernández et al., 2021). This lack of updated information about reef environments, which are areas of ecological and economic importance for Cozumel, compromises the integrity of the resources that integrate them. Therefore, the aim of the present study was to determine the taxonomic composition of marine macroalgae present in the PNAC and their affinity for the substrate, including a brief morphological description of each species and photographic references.

Materials and Methods

Study area

Cozumel Island is located in the Caribbean Sea, 20 km east from the Yucatán Peninsula (Álvarez-Filip et al., 2009). The PNAC is located on this island, extending from the northern end of the Paraíso reef (20°35'22''N, 86°43'46''W) to the southern end of the island, then continuing north to Punta Chiqueros on the eastern side (20°16'11''N, 86°59'26''W) (Álvarez-Filip et al., 2009). This area has an Am (f) type climate, warm humid with abundant rains in summer (Orellana et al., 2007), and is characterized by two well-defined climatic seasons: rainy from May to January, and dry in February, March and April (Climate-Data, 2019).

The PNAC is formed by an almost continuous reef development of approximately 24 reefs (Underwater Editions, 2003; Loreto Viruel et al., 2017), of which 12 were studied here: Chankanaab (CK), Tormentos (TM), Yucab (YC), Tunich (TH), Santa Rosa (SR), El Cedral (EC), Paso del Cedral (PDC), Dalila (DL), La Francesa (LF), Palancar Jardines (PJ), Palancar Ladrillos (PL), and Colombia (CB) (Fig. 1; Table 1). These reefs appear as carbonate rock structures of both low relief and high columns and buttresses that emerge through the sand, rising several meters above the bottom (Mendoza-González et al., 2000). Among the rock formations there are large carbonate sandy slopes; in addition, at the edge of the cliff, usually at depths of up to 30 m, there may be an abrupt drop with an almost vertical rock wall that, together with the rock formations and the sandy slopes, provides substrate for the establishment of different algae (Mendoza-González et al., 2000).

Figure 1: Map of collection locations on the island of Cozumel, Quintana Roo, Mexico. Black dots indicate the location of the sampling sites. The numbers correspond to the names of the sites. 

Table 1: Reefs where macroalgae were collected in the Parque Nacional Arrecifes de Cozumel, Cozumel Island, Quintana Roo, Mexico, including coordinates and collection months. 

Reef Coordinates Collection month
October November
Tikila Norte (TN) 20°29'02''N, 86°58'17''W x x
Tikila Sur (TS) 20°28'54''N, 86°58'23''W x x
Chankanaab (CK) 20°26'28''N, 87°00'07''W x x
Tormentos (TM) 20°25'38''N, 87°00'55''W x x
Yucab (YC) 20°25'22''N, 87°01'20''W x x
Tunich (TH) 20°24'28''N, 87°01'20''W x x
Santa Rosa (SR) 20°22'42''N, 87°01'48''W x x
El Cedral (EC) 20°22'09''N, 87°01'44''W x x
Paso del Cedral (PDC) 20°21'55''N, 87°01'47''W x
La Francesa (LF) 20°21'24''N, 87°01'43''W x x
Dalila (DL) 20°21'26''N, 87°01'40''W x x
Palancar Jardines (PJ) 20°19'30''N, 87°01'38''W x x
Palancar Ladrillos (PL) 20°19'23''N, 87°01'38''W x x
Colombia (CB) 20°18'56''N, 87°01'35''W x x

These reef formations have unique characteristics in the region, and they have positioned the island, due their ecological and economic importance, as one of the main international diving destinations (Santander, 2009; DOF, 2015). Two additional localities were included in our study: Tikila Norte (TN) and Tikila Sur (TS), which, although they are not part of the PNAC, constitute the surrounding region (Fig. 1), being areas of coral repopulation and locality in Cozumel where it is intended to build the Fourth Cruise Dock (DOF, 2022) for vessels that have a capacity of approximately 2500-7500 passengers, such as those that currently arrive and that dock at the Punta Langosta, Puerta Maya, and International docks. According to the APIQROO (2023), to date, Cozumel has the first place in the arrival of cruise ships in Mexico. Therefore, the results obtained from these localities are presented and discussed together with the PNAC.

Field work

The collections were made during October and November 2018, previously recorded as a highly diverse season (Mendoza-González et al., 2000; Mateo-Cid et al., 2006), by autonomous diving (SCUBA). The immersions were carried out at depths from 7 to 30 m. Phycological material (up to 1 cm) was collected by detaching it from the substrate manually or with the help of a spatula and placed in resealable bags (Ziploc®). Only most evident species were collected, including epiphytic ones.

Photographs and videos were taken in situ with a camera Garmin VirbXE (Kansas, USA). The samples were placed in plastic trays; photographs of the wet specimens were taken, they were mounted on herbarium sheets and later integrated into the marine macroalgae collection of the herbarium UAMIZ (Appendix) of the Universidad Autónoma Metropolitana in Mexico City (acronym according to Thiers, 2023). All samples for each species were designated with a field number (e. g. TH14, SR19, DL13, PJ16) and are part of a same voucher (October or November, as appropiate, each one with its field numbers associated), or an herbarium sheet, under a voucher number (e. g. TH14, SR19, DL13, PJ16 are part of a same voucher UAMIZ-1474 for October).

Cabinet work

For the morpho-anatomical characterization, a stereoscopic microscope Leica ZOOM 2000 (Heidelberg, Germany) and an optical microscope Leica DMLB (Heidelberg, Germany) were used. Cross and longitudinal sections were made by hand using a double-edged razor. In the case of calcareous algae, the calcium was removed with acidified solution 1N HCl. Photomicrographs were taken using a Quasar USB 2MP (Bophal, India) digital camera adapted to a microscope Leica DMLB (Heidelberg, Germany). The photographs of the habits were taken with a Nikon D7000 (Tokio, Japan) digital camera.

The taxonomic determination was made with specialized literature (Schneider and Searles, 1991; Richardson and Ginger, 1994; Littler and Littler, 2000; Collado-Vides et al., 2009; Robinson et al., 2012; Mendoza-González et al., 2014; Camacho et al., 2015; Acosta-Calderón et al., 2016; 2018; Godínez-Ortega et al., 2019). The phycofloristic list was presented according to the classification used by Wynne (2022) and the current taxonomic status of each species was reviewed in the Algaebase database (Guiry and Guiry, 2023). The substrates where the macroalgae occurred were classified according to the proposal of León-Álvarez et al. (2007), remaining as follows: epilithic (rocks), psammophytic (sand), epizoic (particularly Porifera and Cnidaria (Anthozoa)) and epiphytic (algae).

Results

A total of 42 species of macroalgae were identified, which are shown in the Appendix, accompanied by the type of substrate in which they grew and the date of collection. Of the total taxa, 5 corresponded to Ochrophyta (12%), 12 Rhodophyta (30%) and 25 Chlorophyta (58%), distributed in 9 orders, 16 families and 26 genera (Appendix). The best represented families were Dictyotaceae for Ochrophyta (three species), Ceramiaceae and Rhodomelaceae for Rhodophyta (three species each) and Halimedaceae for Chlorophyta (18 species). Of the two months analyzed, November had the highest number of species: 42 taxa.

Of the total number of macroalgae species, 18 new records for the PNAC (indicated with *) were obtained: Dictyota guineënsis (Kützing) P. Crouan & H. Crouan, Dictyota pinnatifida Kützing, Lobophora guadeloupensis N.E. Schultz, F. Rousseau & L.Le Gall, Sargassum cf. cymosum C. Agardh, Sporochnus pedunculatus (Hudson) C. Agardh, Ptilothamnion speluncarum (Collins & Hervey) D.L. Ballantine & M.J. Wynne, Dasya antillarum (M. Howe) A.J.K. Millar, Ulva intestinalis Linnaeus, Cladophora liniformis Kützing, Rhizoclonium riparium (Roth) Harvey, Caulerpa cupressoides var. flabellata Børgesen, Avrainvillea asarifolia Børgesen, Halimeda scabra M. Howe, Rhipocephalus phoenix (J. Ellis & Solander) Kützing, Udotea cyathiformis f. infundibulum (J. Agardh) D.S. Littler & M.M. Littler, Udotea cyathiformis f. sublittoralis (W.R. Taylor) D.S. Littler & M.M. Littler, Udotea luna D.S. Littler & M.M. Littler and Udotea cf. unistratea D.S. Littler & M.M. Littler. With the exception of Sargassum cf. cymosum, Sporochnus pedunculatus, Dasya antillarum, Ptilothamnion speluncarum, Ulva intestinalis, Cladophora liniformis, Caulerpa cupressoides var. flabellata, Udotea cyathiformis f. infundibulum, Udotea cyathiformis f. sublittoralis, Udotea luna and Udotea cf. unistratea, which constitute new records for the island, and Lobophora guadeloupensis, which in turn constitutes a first record for Mexico (indicated with **), the rest of the species had already been reported for the island, although not for the PNAC.

Regarding the type of substrate in which macroalgae develop in our study area, it was observed that 25 species establish themselves in more than one type of substrate, of which one was brown, six were red and 18 green algae. Among these are Dictyota pinnatifida, Dasya pedicellata (C. Agardh) C. Agardh, Halimeda opuntia (Linnaeus) J.V. Lamouroux, Penicillus dumetosus (J.V. Lamouroux) Blainville and Rhipocephalus phoenix, species that grow on rocks, sand and invertebrates. Of the rest, 18 species develop on a single substrate, two on rocks (one brown, one green), six on sand (two brown, four green); and 12 are epiphytes, of which eight records were red (Amphiroa fragilissima (Linnaeus) J.V. Lamouroux, Jania adhaerens J.V. Lamouroux, Hypnea spinella (C. Agardh) Kützing, Centroceras clavulatum (C. Agardh) Montagne, Ceramium luetzelburgii O.C. Schmidt, Gayliella flaccida (Harvey ex Kützing) T.O. Cho & L.M. McIvor, Ptilothamnion speluncarum (Collins & Hervey) D.L. Ballantine & M.J. Wynne and Polysiphonia atlantica Kapraun & J.N. Norris), two green (Cladophora liniformis and Rhizoclonium riparium), and one brown (Sporochnus pedunculatus). In descending order, the substrates in which the species grew were: psammophytic (33%), followed by epilithic (32%), epizoic (19%) and epiphytic (16%) (Fig. 2). The species richness of macroalgae per reef in the PNAC is shown in Figure 3.

Figure 2: Percentage of substrates occupied by the different groups of algae species (Ochrophyta, Rhodophyta and Chlorophyta) present in the Parque Nacional Arrecifes de Cozumel, Quintana Roo, Mexico. 

Figure 3: Graph showing the species richness per sampled reef, Parque Nacional Arrecifes de Cozumel, Quintana Roo, Mexico. 

The morphological descriptions of the species, as well as the images associated with each one (such as thallus and anatomy) are presented systematically according to Wynne (2022).

Taxonomy

Ochrophyta

Phaeophyceae

Dictyotales

Dictyotaceae

*Dictyota guineënsis (Kützing) P. Crouan & H. Crouan, 1878. Fig. 4A,B.

Figure 4: A-B. Dictyota guineënsis (Kützing) P. Crouan & H. Crouan: A. habit, scale bar=1 cm; B. branch detail, scale bar=4 mm; C. Dictyota pinnatifida Kützing: habit, scale bar=1 cm; D-E. Lobophora guadeloupensis N.E. Schultz, F. Rousseau & L. Le Gall: D. habit, scale bar=2.5 cm, E. longitudinal section of the sheet, scale bar=50 μm; F. Sargassum cf. cymosum C. Agardh: detail of the ramuli, scale bar=3 mm; G. Sporochnus pedunculatus (Hudson) C. Agardh: habit, scale bar=1.5 cm; H. Jania adhaerens J.V. Lamouroux: cells of the joint aligned longitudinally, scale bar=25 μm; I-J. Amphiroa fragilissima (Linnaeus) J.V. Lamouroux: I. habit, scale bar=1 mm, J. branch joint, scale bar=300 μm; K. Centroceras clavulatum (C. Agardh) Montagne: nodes with spines and pincer-shaped apices, scale bar=200 μm; L. Ceramium luetzelburgii O.C. Schmidt: branch nodes and internodes, scale bar=70 μm. 

Thallus 20-30 cm long, dark yellow to brown, bushy, erect; branching alternate proximally, dichotomous distally; blades 1-2.4 mm diameter, narrow strap-shaped; margins smooth, wavy; apices dichotomously branched, blunt or acute; medulla 2-3 cells thick, one cell thick at margins; cells 40-85 µm diameter, rectangular, arranged in rows; cortical cells 20 µm diameter.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef El Cedral, depth 23 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1471; Reef La Francesa, depth 14 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1432.

*Dictyota pinnatifida Kützing, 1859. Fig. 4C.

Thallus 15 cm long, dark yellow to brown, erect; branching irregular to dichotomous; blades 4-5 mm diameter, strap-shaped; margins smooth; apices dichotomously branched, up to 45°, blunt or oblong; medulla 2-5 cells thick, thinnest in middle of lamina; cells 50-80 µm diameter, rectangular, arranged in two layers; cortical cells 10-20 µm diameter.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Palancar Ladrillos, depth 21 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1472; Reef La Francesa, depth 14 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1433.

**Lobophora guadeloupensis N.E. Schultz, F. Rousseau & L.Le Gall, 2015. Fig. 4D,E.

Thallus 4 cm long, brown; blades 1-4 cm diameter × 1-3 cm long, fasciculate; in longitudinal section, medulla 2 cells thick, 80-100 µm diameter × 12.5-25 µm long; cortical cells four, two cells at each end, 80-100 µm diameter × 12.5-25 µm long.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Tormentos, depth 19 m, 30.XI.2018, L. G. Calva Benítez UAMIZ-1434.

Fucales

Sargassaceae

*Sargassum cf. cymosum C. Agardh, 1820. Fig. 4F.

Thallus 60-90 cm long, light brown to brown, forming bushes; main axes smooth or with some spines; leaves 3-8 mm diameter × 2-6 cm long, numerous, flat, narrow, firm; midrib prominent; margins notched; bases asymmetric; apices blunt or sharp; aerocysts numerous, round to oval, 3-6 mm diameter; terminal spine absent.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Paso del Cedral, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1435.

Sporochnales

Sporochnaceae

*Sporochnus pedunculatus (Hudson) C. Agardh, 1817. Fig. 4G.

Thallus 20 cm long, light brown, stiff; branching irregular on main axis and branches; main shaft cylindrical, rigid 1 mm diameter; branches with twigs ending in fine filamentous tufts; filaments 3 mm long.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Palancar Jardines, depth 11 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1473; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1436.

Rhodophyta

Florideophyceae

Corallinales

Corallinaceae

Jania adhaerens J.V. Lamouroux, 1816. Fig. 4H.

Thallus 4 cm long, pink to white, brittle, in clumps; branching broadly dichotomous; branches 70-200 µm diameter, cylindrical, tapering slightly towards blunt apices; segments 70-200 µm diameter × 0.4-1 mm long, calcified; joints with 7-8 cells aligned longitudinally, flexible, not calcified.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Palancar Jardines, depth 11 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1474; Reef Dalila, depth 18 m, 28.XI.2018, L. G. Calva Benítez UAMIZ-1437.

Lithophyllaceae

Amphiroa fragilissima (Linnaeus) J.V. Lamouroux, 1816. Fig. 4I,J.

Thallus 8 cm long, reddish to pinkish white, fragile, calcareous, tangled, forming extensive tufts; branching regularly dichotomous, with acute angles, occasionally trichotomous; branches thin, brittle, cylindrical, 150-250 µm diameter × 0.2-0.9 mm long; flexible joints, without calcification; oblong apices.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1475; Reef Tunich, depth 10 m, 28.XI.2018, L. G. Calva Benítez UAMIZ-1438.

Ceramiales

Ceramiaceae

Centroceras clavulatum (C. Agardh) Montagne, 1846. Fig. 4K.

Thallus 12 cm long, light pink to reddish, filamentous; branching narrowly dichotomous; apices forked, slightly coiled inward, pincer-shaped surrounded by spines; branches 50-150 µm diameter, highly pigmented; segments 50-150 µm diameter × 250-500 µm long, with spines at each node; rectangular cells with uniform size, aligned longitudinally.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Palancar Ladrillos, depth 21 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1453; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1476.

Ceramium luetzelburgii O.C. Schmidt, 1924. Fig. 4L.

Thallus 3-5 cm long, pink to reddish; branching dichotomous; uniseriate filaments in nodes; nodes 10-40 µm long × 20-80 µm diameter; quadrangular or triangular cells, with no obvious gap between rows of nodal cells; unicellular internodes 50-180 µm long × 20-60 µm diameter that are lost between the cortication of the youngest portions.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Colombia, depth 10 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1439; Reef Palancar Ladrillos, depth 26 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1477.

Gayliella flaccida (Harvey ex Kützing) T.O. Cho & L.M. McIvor, 2008. Fig. 5A.

Figure 5: A. Gayliella flaccida (Harvey ex Kützing) T.O. Cho & L.M. McIvor: nodes and branch apex, scale bar=100 μm; B. Dasya antillarum (M. Howe) A.J.K. Millar: ramula with opposite branching, scale bar=50 μm; C-D. Dasya pedicellata (C. Agardh) C. Agardh: C. habit, scale bar=2 cm, D. branches covered by branchlets, scale bar=1mm; E. Laurencia intricata J.V. Lamouroux: detail of the branch with spiral ramification, scale bar=3 mm; F. Yuzurua poiteaui (J.V. Lamouroux) Martin-Lescanne: habit, scale bar=1 cm; G-H. Polysiphonia atlantica Kapraun & J.N. Norris: G. habit, scale bar=150 μm, H. cystocarp detail, scale bar=50μm. 

Thallus 10 cm long, light pink to reddish, filamentous, dense, forming loose or dense tufts; branching irregular to pseudodichotomous; apices narrow distally, blunt to oblong, rarely pincer-shaped; segments 50-90 µm diameter × 100-300 µm long; joint cells arranged in 3-6 bands, upper 1-2 bands of small, round cells, lower 1-2 bands of transversely elongated cells.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1466; Reef La Francesa, depth 14 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1478.

Delesseriaceae

*Dasya antillarum (M. Howe) A.J.K. Millar, 1996. Fig. 5B.

Thallus 10 cm long, brown to reddish brown, delicate, bushy; branching irregular to pseudodichotomous; branches 1 mm diameter, bare proximally, covered with filamentous, hairlike branchlets distally; abundant cortication; branchlets 2 mm long, filamentous; tetrasporangial stichidia 200 µm diameter × 500 µm long, oval; tetrasporangia 50-60 µm diameter, spherical, tetrahedrally divided.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Dalila, depth 18 m, 26.XI.2018, L. G. Calva Benítez UAMIZ-1440.

Dasya pedicellata (C. Agardh) C. Agardh, 1824. Fig. 5C,D.

Thallus 20 cm long, dark red; erect, delicate, soft; branching alternate on main axis; branches 8 mm diameter, slippery, long, graceful, completely cut, covered by fine bunches similar to hairs; completely corticated; branchlets 2-7 mm long; tetrasporangial stichidia 80-160 µm diameter × 0.5-1.2 mm long, lance-shaped; tetrasporangia 40-80 µm diameter, spherical, tetrahedrally divided.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1441; Reef Santa Rosa, depth 30 m, 28.XI.2018, L. G. Calva Benítez UAMIZ-1479.

Rhodomelaceae

Laurencia intricata J.V. Lamouroux, 1813. Fig. 5E.

Thallus 15 cm long, brown, pink to reddish, fleshy, flaccid, gregarious, in loose mats; cylindrical; spiral branching, sparse, irregularly alternate; main axis not apparent; branches 0.4-0.8 mm diameter, cylindrical; apices slightly curved downwards, with tufts of fine, discrete filaments branching dichotomously in the terminal depression.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 13 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1480; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1442.

Yuzurua poiteaui (J.V. Lamouroux) Martin-Lescanne, 2010. Fig. 5F.

Thallus 20 cm long, brown with reddish tips, stiff, bushy, wiry; branching closely alternated in pairs to irregular; branches 0.5-2 mm diameter, cylindrical to slightly flattened; twigs 0.3-1 mm diameter × 0.5-2 mm long, numerous, clavate, cylindrical, wart-like, swollen, blunt to slightly oblong apices.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Tunich, depth 18 m, 20.X.2018, L. G. Calva Benítez UAMIZ-1443; Reef La Francesa, depth 14 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1481.

Polysiphonia atlantica Kapraun & J.N. Norris, 1982. Fig. 5G,H.

Thallus 2 cm long, brown to dark red, filamentous, soft, flaccid; branching, sparse, dichotomous; axes 60-90 µm diameter, four pericentral cells arising from axial cell; cortication absent; segments 60-90 µm diameter × 80-180 µm long; spherical tetrasporangia, cystocarps 150-300 µm diameter × 180-360 µm long, globular in shape.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1482; Reef El Cedral, depth 23 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1444.

Wrangeliaceae

*Ptilothamnion speluncarum (Collins & Hervey) D.L. Ballantine & M.J. Wynne, 1998. Fig. 6A.

Figure 6: A. Ptilothamnion speluncarum (Collins & Hervey) D.L. Ballantine & M.J. Wynne: erect axis cells, scale bar=30 μm; B. Hypnea spinella (C. Agardh) Kützing: branchlest detail, scale bar=250 μm; C-D. Caulerpa cupressoides var. flabellata Børgesen: C. habit, scale bar=1 cm, D. branchlet detail, scale bar=2 mm; E-F. Derbesia marina (Lyngbye) Solier: E. habit, scale bar=5 mm, F. filament detail, scale bar=50 μm; G-H. Avrainvillea asarifolia Børgesen: G. habit, scale bar=2 cm, H. detail of the siphons of the lamina, scale bar=30 μm. 

Thallus 1.2 cm long, light pink to reddish, filamentous; branching generally absent, when present sparse, dichotomous, or irregular; filaments 22-40 µm diameter, tapering distally; cells 20 µm diameter × 85-90 µm long; stolons 30-40 µm diameter, conspicuous, filamentous.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 13 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1445; Reef Dalila, depth 18 m, 26.XI.2018, L. G. Calva Benítez UAMIZ-1483.

Gigartinales

Cystocloniaceae

Hypnea spinella (C. Agardh) Kützing, 1847. Fig. 6B.

Thallus 3 cm long, light brown to reddish brown, fibrous, in matted mats; branching irregular in all directions; branches 0.4-1 mm diameter, cylindrical; branchlets 2-2.5 mm long, numerous, like thorns or spurs that cover the main axis and branches; apices tapering, pointed, not curved.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 13 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1484; Reef Tunich, depth 10 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1446.

Chlorophyta

Ulvophyceae

Bryopsidales

Caulerpaceae

*Caulerpa cupressoides var. flabellata Børgesen, 1907. Fig. 6C,D.

Stolon 20 cm long, creeping, with branched rhizoids, numerous; erect axes 2.5-7 cm long, yellow to dark green, rigid; branching irregular to somewhat dichotomous; branchlets 0.1-0.8 mm diameter, short, marginally spine-like, stiff, opposite; apices pointed.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Tormentos, depth 12 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1485; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1447.

Derbesiaceae

Derbesia marina (Lyngbye) Solier, 1846. Fig. 6E,F.

Discrete rhizoid mass; thallus 1-3 cm long, dark green; fine filaments forming tufts; branching sparse, lateral, dichotomous; siphons 37-55 µm diameter, in the dichotomy 63 µm diameter; oblong apices.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1486; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1448.

Dichotomosiphonaceae

*Avrainvillea asarifolia Børgesen, 1909. Fig. 6G,H.

Thallus 9-20 cm long, solitary or in groups, 3-5 fronds, erect, dull greyish green to darkish green; stipe cylindrical flattened above, 6-9 mm diameter × 6-10 cm long; frond kidney-shaped, 13.5 cm diameter × 10 cm long, 12 mm thick, shallow zoning, margins irregular to gently rounded; interior siphons contorted to slightly moniliform 25 µm diameter.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Tikila Norte, depth 8 m, 19.X.2018, L. G. Calva Benítez UAMIZ-1487; Reef Palancar Ladrillos, depth 26 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1449.

Halimedaceae

Halimeda copiosa Goreau & E.A. Graham, 1967. Fig. 7A,B.

Figure 7: A-B. Halimeda copiosa Goreau & E.A. Graham: A. habit, scale bar=1 cm, B. detail of the utricle, scale bar 15 μm; C-D. Halimeda opuntia (Linnaeus) J.V. Lamouroux: C. habit, scale bar=2 cm, D. detail of the utricle, scale bar=100 μm; E-F. Halimeda scabra M. Howe: E. habit, scale bar=2 cm, F. utricles in superficial view, scale bar=30 μm; G-H. Halimeda tuna (J. Ellis & Solander) J.V. Lamouroux: G. habit, scale bar=1 cm, H. utricles in superficial view, scale bar=40 μm; I-J. Halimeda tuna f. platydisca (Decaisne) E.S. Barton: I. habit, scale bar=1 cm, J. detail of the utricle, scale bar=30 μm; K-M. Penicillus dumetosus (J.V. Lamouroux) Blainville: K. habit, scale bar=2 cm, L. utricles, scale bar=250 μm, M. siphon dichotomy, scale bar=500 μm. 

Thallus 10-30 cm long, pendulous, forming loose clumps or chains, bright green to whitish; branching mostly dichotomous, initially in one plane; segments highly calcified, oblong to oval ribbed, first 2-5 segments three-lobed, 0.4-2.1 cm diameter × 0.3-1.3 cm long; utricles 70-100 µm diameter; utricles in surface (apical) view 30-40 µm diameter; stipe not evident.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1488; Reef Dalila, depth 18 m, 26.XI.2018, L. G. Calva Benítez UAMIZ-1450.

Halimeda opuntia (Linnaeus) J.V. Lamouroux, 1967. Fig. 7C,D.

Thallus 10-20 cm long, forming dense clumps or mounds, greenish yellow to dark green; branching irregular; segments calcified, trilobed or ribbed, 0.9-1.1 cm diameter × 0.5-0.7 cm long; utricles 80-100 µm diameter; utricles in surface (apical) view 11-50 µm diameter; stipe not evident.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Chankanaab, depth 14 m, 19.X.2018, L. G. Calva Benítez UAMIZ-1489; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1451.

*Halimeda scabra M. Howe, 1905. Fig. 7E,F.

Thallus 5-15 cm long, erect, grey green; branching in one plane; segments slightly calcified, disc or wedge-shaped and rough surface, 2 cm diameter × 1.5 cm long; utricles 90-100 µm diameter with superficial spine; utricles in surface view 40-60 µm diameter; obvious stipe formed by fused segments.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 13 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1452; Reef Tormentos, depth 19 m, 30.XI.2018, L. G. Calva Benítez UAMIZ-1490.

Halimeda tuna (J. Ellis & Solander) J.V. Lamouroux, 1816. Fig. G,H7.

Thallus 10-25 cm long, compact, dark green; initial branching in one plane; segments slightly calcified, disc-shaped, 2.3 cm diameter × 1.6 cm long; utricles 100-150 µm diameter; utricles in surface view 40-50 µm diameter; very evident stipe formed by fused segments.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Palancar Ladrillos, depth 21 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1453; Reef Dalila, depth 18 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1491.

Halimeda tuna f. platydisca (Decaisne) E.S. Barton, 1901. Fig. 7I,J.

Thallus 7-15 cm long, compact, light to dark green; initial branching in one plane; segments slightly calcified, disc-shaped, 2-4 cm diameter × 2-4 cm long; utricles 90-100 µm diameter; utricles in surface view 55-65 µm diameter; stipe not evident.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1454; Reef El Cedral, depth 23 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1492.

Penicillus dumetosus (J.V. Lamouroux) Blainville, 1830. Fig. 7K-M.

Rhizoidal mass prominent; thallus 10-15 cm long, bright green to dark green; stipe 15 mm diameter × 5-8 cm long, morphologically differentiated from the capitulum, calcified; utricles 500-1000 µm diameter, apices tapering to blunt points; capitulum brush-shaped, 3-6 cm diameter × 20-25 cm long; siphons 400-800 µm diameter, thick, equally constrained in all dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1455; Reef Paso del Cedral, depth 17 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1493.

Penicillus lamourouxii Decaisne, 1842. Fig. 8A,B.

Figure 8: A-B. Penicillus lamourouxii Decaisne: A. habit, scale bar=2 cm, B. dichotomy in the capitulum siphon, scale bar=150 μm; C-D. Penicillus pyriformis A. Gepp & E.S. Gepp: C. habit, scale bar=2 cm, D. detail of the utricle, scale bar=100 μm; E. Rhipiliopsis sp.: habit, scale bar=1 cm; F-G. Rhipocephalus oblongus (Decaisne) Kützing: F. habit, scale bar=2 cm, G. detail of the utricle, scale bar=200 μm; H-I. Rhipocephalus phoenix (J. Ellis & Solander) Kützing: H. habit, scale bar=2 cm, I. detail of the utricle, scale bar=100 μm; J-K. Udotea cyathiformis Decaisne: J. habit, scale bar=2 cm, K. laminate siphons, scale bar=200 μm; L-M. Udotea cyathiformis f. infundibulum (J. Agardh) D.S. Littler & M.M. Littler: L. habit, scale bar=2 cm, M. detail of the utricle, scale bar=100 μm. 

Rhizoidal mass bulbous; thallus 6 cm long, bright green to dark green; stipe 15 mm diameter × 4-5 cm long, morphologically differentiated from the capitulum, calcified; utricles 500-1000 µm diameter, apices short, flat, finger-like, dichotomously divided; capitulum brush-shaped, 0.3 mm diameter × 2-4 cm long; siphons 300-500 µm diameter, thick, equally constrained in all dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 14 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1456.

Penicillus pyriformis A. Gepp & E.S. Gepp, 1905. Fig. 8C,D.

Rhizoidal mass bulbous; thallus 4-8 cm long, greyish green; stipe 5-7 mm diameter × 3-10 cm long, morphologically differentiated from the capitulum, highly calcified; utricles 400-500 µm diameter, apices finger-like tapering to blunt points; capitulum flat-cup shaped, 5-10 cm diameter × 2-5 cm long; siphons 150-200 µm diameter, rigid, entangled, constrained in all dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 13 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1494; Reef El Cedral, depth 23 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1457.

Rhipiliopsis sp.Fig. 8E.

Rhizoidal mass discrete; thallus 4-6 cm long, light green, translucent; stipe 2−3 mm diameter × 1−2 cm long, morphologically differentiated from the blade; blade circular 2−3 cm diameter, margins rounded, smooth to finely ragged; siphons cylindrical, on layer thick.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1495; Reef Palancar Jardines, depth 18 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1458.

Rhipocephalus oblongus (Decaisne) Kützing, 1849. Fig. 8F,G.

Rhizoidal mass compact; thallus 3-8 cm long, dark green; stipe 2-6 mm diameter × 1-3 cm long, morphologically differentiated from the capitulum, calcified; utricles 200-250 µm diameter, apices short tapering to blunt points; capitulum cone-shaped to extremely elongate, 1-3 cm diameter × 2-5 cm long; siphons 150-200 µm diameter, slender, branching dichotomously at equal distances from the base.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1459; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1496.

*Rhipocephalus phoenix (J. Ellis & Solander) Kützing, 1843. Fig. 8H,I.

Rhizoidal mass compact; thallus 6-13 cm long, dark green; stipe 3-5 mm diameter × 2-5 cm long, morphologically differentiated from the capitulum, calcified; utricles 200-250 µm diameter, apices slightly elongate, tapering to blunt points; capitulum ovoid in shape, composed of narrow lamellae, 5-7 cm diameter × 5-8 cm long; siphons 200-250 µm diameter, slender, branching dichotomously at equal distances from the base.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1460; Reef Tunich, depth 10 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1497.

Udotea cyathiformis Decaisne, 1842. Fig. 8J,K.

Rhizoidal mass fibrous; thallus 3-10 cm long; bright green to dark green; stipe 1-4 mm diameter × 1-6 cm long, morphologically differentiated from the lamina, calcified; utricles 100-200 µm diameter, apices short tapering to oblong points; lamina cup-shaped, delicate, thin, bark absent, zonation weak, 5-7 cm diameter × 2-8 cm long; siphons 30-70 µm diameter, constricted above dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1461; Reef El Cedral, depth 23 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1498.

*Udotea cyathiformis f. infundibulum (J. Agardh) D.S. Littler & M.M. Littler, 1990. Fig. 8J,M.

Rhizoidal mass fibrous; thallus 5-7 cm long; dark green; stipe 1-4 mm diameter × 1-5 cm long, morphologically differentiated from the lamina, calcified; utricles 900 µm diameter, apices short, flattened; lamina cup-shaped, delicate, thin, bark absent, zonation weak, 1-3 cm diameter × 1-2 cm long; siphons 100-130 µm diameter, constrained above dichotomies.

Taxonomic comment: the description of the morphological characters corresponds to that reported by Littler and Littler (2000) except for the diameter of the siphons, which they reported as 30-70 µm diameter.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Santa Rosa, depth 26 m, 17.X.2018, L. G. Calva Benítez UAMIZ-1462; Reef Tikila Norte, depth 7 m, 30.XI.2018, L. G. Calva Benítez UAMIZ-1499.

*Udotea cyathiformis f. sublittoralis (W.R. Taylor) D.S. Littler & M.M. Littler, 1990. Fig. 9A,B.

Figure 9: A-B. Udotea cyathiformis f. sublittoralis (W.R. Taylor) D.S. Littler & M.M. Littler: A. habit, scale bar=2 cm, B. detail of the utricle, scale bar=90 μm; C-D. Udotea dixonii D.S. Littler & M.M. Littler: C. habit, scale bar=2 cm, D. detail of the utricle, scale bar=50 μm; E-F Udotea luna D.S. Littler & M.M. Littler: E. habit, scale bar=2 cm, F. dichotomy in the lamina siphon, scale bar=100 μm; G-H. Udotea unistratea D.S. Littler & M.M. Littler: G. habit, scale bar=2 cm, H. detail of the utricle, scale bar=50 μm; I-J. Udotea cf. unistratea D.S. Littler & M.M. Littler: I. habit, scale bar=2 cm, J. laminate siphons, scale bar=100 μm. 

Rhizoidal mass fibrous; thallus 4−7 cm long; dark green; stipe 1-4 mm diameter × 1-3 cm long, morphologically differentiated from the lamina, calcified; utricles 100 µm diameter, apices short, oblong; lamina cup-shaped, delicate, thin, bark absent, weak zonation, margins several layers thick, 3 cm diameter × 2 cm long; siphons 60-80 µm diameter, constrained above dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Palancar Ladrillos, depth 21 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1463; Reef Tormentos, depth 19 m, 30.XI.2018, L. G. Calva Benítez UAMIZ-1500.

Udotea dixonii D.S. Littler & M.M. Littler, 1990. Fig. 9C,D.

Rhizoidal mass fibrous; thallus 8-15 cm long; light green to dark green; stipe 2-3 mm diameter × 1-6 cm long; transition between stipe and lamina not evident, slightly calcified; occurs in groups of up to six stems; erect axis 3-6 cm diameter × 3-7 cm long, multilayered, corticate; unconstrained siphons on dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef La Francesa, depth 13 m, 18.X.2018, L. G. Calva Benítez UAMIZ-1501; Reef Colombia, depth 27 m, 26.XI.2018, L. G. Calva Benítez UAMIZ-1464.

*Udotea luna D.S. Littler & M.M. Littler, 1990. Fig. 9E,F.

Rhizoidal mass small; thallus 7 cm long; dark green; stipe 1-3 mm diameter × 1 cm long, gradual transition between stipe and lamina, slightly calcified; utricles 100-250 µm diameter with long apices, dichotomously acute; lamina fan-shaped to crescent, velvety texture, bark absent, weak zonation, 7-9 cm diameter × 5-6 cm long; siphons 50-80 µm diameter, constrained above dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Tikila Sur, depth 8 m, 19.X.2018, L. G. Calva Benítez UAMIZ-1502; Reef Santa Rosa, depth 30 m, 28.XI.2018, L. G. Calva Benítez UAMIZ-1465.

Udotea unistratea D.S. Littler & M.M. Littler, 1990. Fig. 9G,H.

Rhizoidal mass fibrous; thallus 11 cm long; light green to dark green; stipe 1-2 mm diameter × 1-5 cm long, morphologically differentiated from the lamina, slightly calcified; utricles 200-300 µm diameter, apices short, oblong; lamina fan-shaped, bark absent, weak zonation, 6-7 cm diameter × 7-8 cm long; siphons 100-200 µm diameter, constrained above dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1466; Reef Paso del Cedral, depth 17 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1503.

*Udotea cf. unistratea D.S. Littler & M.M. Littler, 1990. Fig. 9I,J.

Rhizoidal mass fibrous; thallus 9 cm long; light green to dark green; stipe 1-2 mm diameter × 4-5 cm long, morphologically differentiated from the lamina, slightly calcified; utricles 250-500 µm diameter, apices short, oblong; lamina fan-shaped, bark absent, zonation weak, 8-10 cm diameter × 4-6 cm long; siphons 50-100 µm diameter, constrained above dichotomies.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef El Cedral, depth 23 m, 27.XI.2018, L. G. Calva Benítez UAMIZ-1467.

Cladophorales

Cladophoraceae

Cladophora catenata Kützing, 1843. Fig. 10A,B.

Figure 10: A-B. Cladophora catenata Kützing: A. habit, scale bar=1 cm, B. detail of the filament dichotomy, scale bar=300 μm; C-D. Cladophora liniformis Kützing: C. habit, scale bar=1 cm, D. detail of filament, scale bar=100 μm; E. Rhizoclonium riparium (Roth) Harvey, scale bar=20 μm; F-G. Ulva intestinalis Linnaeus: F. habit, scale bar=2 cm, G. filament detail, scale bar=5 mm. 

Thallus 2-7 cm long, dark green, filamentous, rigid, erect to prostrated, in small, dense tufts; branching irregular, dichotomous to alternate towards the base, unilateral towards apex; maximum number of branches at joints one, rarely two; branchlets stiff; apices oblong; cells 160-300 µm diameter × 26-30 µm long.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Tikila Norte, depth 8 m, 19.X.2018, L. G. Calva Benítez UAMIZ-1504; Reef Chankanaab, depth 16 m, 30.XI.2018, L. G. Calva Benítez UAMIZ-1468.

*Cladophora liniformis Kützing, 1849. Fig. 10C,D.

Thallus 7 cm long, dark green, filamentous, like loose mats; branching appearing dichotomous towards the base, somewhat unilateral towards the apex; maximum number of branches at joints one, rarely two; apices straight or oblong; cells 20-40 µm diameter × 8-12 µm long.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1505; Reef Yucab, depth 17 m, 29.XI.2018, L. G. Calva Benítez UAMIZ-1469.

*Rhizoclonium riparium (Roth) Harvey, 1849. Fig. 10E.

Thallus filamentous, yellowish green, tangled; unbranched or seldom branched, somewhat curled; filaments 7-15 µm diameter; cells rectangular 7-13 µm diameter × 30-40 µm long; apical cells often swollen or oblong.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Chankanaab, depth 14 m, 19.X.2018, L. G. Calva Benítez UAMIZ-1506; Reef Chankanaab, depth 16 m, 30.XI.2018, L. G. Calva Benítez UAMIZ-1468.

Ulvales

Ulvaceae

*Ulva intestinalis Linnaeus, 1753. Fig. 10F,G.

Thallus 10-20 cm long, greenish yellow; blades cylindrical, or hollow tubular, flaccid, gregarious, 0.3-1.0 cm diameter; margins smooth, wavy, contoured towards apex, tapering towards base; cells with different shapes, rectangular with rounded edges, square, oval, and irregular.

Examined material: MEXICO, Quintana Roo, Cozumel, PNAC, Reef Yucab, depth 14 m, 16.X.2018, L. G. Calva Benítez UAMIZ-1507; Reef Colombia, depth 27 m, 26.XI.2018, L. G. Calva Benítez UAMIZ-1470.

Discussion

Phycofloristic diversity

In the present study, a total of 42 species of macroalgae were recorded for the PNAC, which constitutes 20% of known algal diversity in the area (Fig. 11). Mendoza-González et al. (2000) previously reported 93 algae (22 Ochrophyta and 71 Chlorophyta) on PNAC reefs; of these, only 13 species of green algae were shared with this study. Mateo-Cid et al. (2006) reported 117 species of red algae, of which only nine were confirmed again in our results. Twenty-three species of the present study are shared with those of Mendoza-González et al. (2000) and Mateo-Cid et al. (2006) together. The species reported here represent 10% of the total of algal species recorded for Cozumel Island, while they constitute 4% for the Mexican Caribbean (Mateo-Cid and Mendoza-González, 1991; Mendoza-González et al., 2000; Mateo-Cid et al., 2006; Cetz-Navarro et al., 2007; Mateo-Cid and Mendoza-González, 2007). It is important to highlight that the studies previously carried out on the PNAC reefs only considered eight reefs that were sampled between 1993 and 1998. Therefore, the relevance of the present study consisted of the incorporation of 14 coral reefs sampled in 2018, including medium-depth reefs and wall reefs (up to 30 m), which contributes with timely and updated information to the phycoflora in the PNAC. For example, none of the new records presented here had been previously recorded in these reefs; also, other species (e. g. Halimeda copiosa) had been recorded only in one reef and here we extended their distribution ranges.

Figure 11: Accumulated records for flora in Parque Nacional Arrecifes de Cozumel, Quintana Roo, Mexico, from studies carried out from 2000 to this study (2018), organized into Phaeophyta, Rhodophyta and Chlorophyta. By group, the bar on the left represents the accumulated records prior to this study and the bar on the right side represents the accumulated with the records provided in this study. 

Richness and substrate

The algal species richness of the present study compared to that reported for Cozumel Island (Mateo-Cid and Mendoza-González, 2007) was low, even with that registered for the PNAC (Mendoza-González et al., 2000; Mateo-Cid et al., 2006). These differences require considering several aspects: first, that the lists presented by Mateo-Cid and Mendoza-González (2007) were the result of a compilation of previous works (Huerta, 1958; Mateo-Cid and Mendoza-González, 1991; Mendoza-González et al., 2000; Mateo-Cid et al., 2006). In the present study, macroalgae were only collected from the coral reefs of the subtidal zone, taking into account four types of substrate: psammophytic, epilithic, epizoic, and epiphytic, thus considering that other substrates and/or habitats to be sampled are lacking; for example, those communities associated with seagrasses (Nava-Olvera et al., 2017) or mobile animals such as mollusks (Garduño-Solórzano et al., 2005). However, not all epiphytic species were included; we only considered the most frequent ones. Patiño-Espinosa et al. (2022) indicated that the diversity of benthic macroalgae was related to the type of substrate. For example, in sandy substrates, the diversity of macroalgae is lower than in epizoic (coral) or even epiphytic ones. In contrast, in this work in the PNAC, the predominant substrates were sandy and rocky. Another factor to consider is that in the present study, only conspicuous algae of more than 1 cm in length were considered. In this regard, Collado-Vides et al. (1998) mentioned that including small species (<1 cm) in the lists results in an overestimation of species, as observed in the lists of Mendoza-González et al. (2000), Mateo-Cid et al. (2006) and Mateo-Cid and Mendoza-González (2007). This could offer an additional explanation about the difference in the number of taxa that have been recorded compared to what we report for the PNAC.

Seasonality

It should be noted that seasonality is another factor that has been studied in the PNAC reefs. In this regard, Mendoza-González et al. (2000) reported greater species richness in Chlorophyta and Ochrophyta during the rainy season than in the dry season. Likewise, Mateo-Cid et al. (2006) recorded a greater number of Rhodophyta algae during this season. Unfortunately, it was not possible to compare our results with previous reports from the dry season, since our sampling months (October and November) corresponded with the rainy season. However, according to Mendoza-González et al. (2000) and Mateo-Cid et al. (2006), in the rainy season the richness of Chlorophyta is greater than that of Rhodophyta and Ochrophyta, which coincides with our results where Chlorophyta had the greatest richness.

Phycofloristic affinity

The PNAC presented a tropical phycoflora typical of the Caribbean Sea. Most of the taxa described in this study had already been recorded in other reef areas of the state of Quintana Roo, such as Puerto Morelos, Isla Mujeres and the Biosphere Reserve Sian Ka’an, where the most common species are the following: Dictyota pinnatifida, Amphiroa fragilissima, Jania adhaerens, Dasya pedicellata, Centroceras clavulatum, Hypnea spinella, Avrainvillea asarifolia, Halimeda opuntia, H. scabra, H. tuna, Penicillus dumetosus, P. lamourouxii, Rhipocephalus phoenix and Udotea cyathiformis f. sublittoralis (Collado-Vides et al., 1998; Quan-Young et al., 2004; Valadez et al., 2014; Acosta-Calderón et al., 2016). Commonly, red algae constitute the dominant group in the phycoflora from the coastal regions of the Mexican Atlantic (Mateo-Cid et al., 1996; Galicia García and Morales García, 2007; Mendoza-González et al., 2007; Cetz-Navarro et al., 2007; Sánchez-Molina et al., 2007; Godínez-Ortega et al., 2009; Mendoza-González et al., 2016; García-García et al., 2020; Cuevas Sánchez et al., 2022; Patiño-Espinosa et al., 2022). In contrast, in the PNAC, Chlorophyta had the highest species richness (26 species), which is probably due to the affinity to the substrate. In this sense, Santelices (1977) mentioned that the hard substrate allows the establishment of Bryopsidal green algae. Likewise, Acosta-Calderón et al. (2016) point out that in sandy substrates it is common to find species of the Halimedaceae; rhizophytic algae that have a fixation system that allows them to adhere to unstable substrates and consolidate (Aguilar-Rosas et al., 2001). This is relevant, since it explains the presence of 92% of the Chlorophyta species that were located on a sandy and/or rocky substrate, which was observed as calcareous platforms, rocks of different sizes, and rocky areas with prominences and cavities (Underwater Editions, 2003). A similar panorama was presented in the Puerto Morelos reef system (Collado-Vides et al., 1998), in the Parque Nacional Arrecifes Xcalak (CONANP, 2004), on the Banco Chinchorro (González and Torruco, 2015) and along the rocky Neovolcanic coastline of Veracruz (Landa-Cansigno et al., 2019) where green algae were the most diverse.

Abiotic factors

It is important to mention that, although light is a major factor whose influence is observed in the distribution of macroalgae, with green algae predominating in shallow reefs and red algae in deep reefs (Roth, 2014), in the present study, the light factor did not have a determining effect. In contrast, although the reefs sampled were at depths of 7 to 30 m, green algae predominated in all reefs. Therefore, the dense aggregates of lamellar algae (Ulva intestinalis) distributed at depths of 23 to 30 m, referred to by Rioja-Nieto et al. (2012), could be related to nutrient contributions that originate from the percolation of wastewater of hotels, which are usually discharged into the subsoil, as well as anthropogenic contributions derived from the population increase on the island, taking into account that there is only one wastewater treatment plant (PMDC, 2021). Likewise, the concentration of carbonates can explain the presence of qualifying species at these depths, as is the case of Halimeda J.V. Lamouroux whose species are calcifying and, therefore, of global importance, since they are strongly associated with coral reef habitats (van Tussenbroek and Barba Santos, 2011; Wizemann et al., 2015; Mayakun and Prathep, 2019). These algae are key members of reef communities, providing vital ecological functions, such as stabilization of reef structure, production of tropical sands, nutrient retention and recycling, primary productivity, and trophic support (Hallock, 2001; Wizemann et al., 2015; Sansone et al., 2017; Mayakun and Prathep, 2019). However, it should be noted that, despite the importance of these algae in reef structures, in most reef phycofloristic records, calcifying green algae occur in a lower proportion, compared to other algal groups (Mateo-Cid and Mendoza-González, 2007; González-Solis et al., 2018; Cruz-Francisco et al., 2020; Piñón-Gimate et al., 2020; López Gómez et al., 2022; Patiño-Espinosa et al., 2022).

Species of the genus Udotea J.V. Lamouroux showed an affinity for sand and in some cases were recorded on rocks, like brown algae. The species of the genus Halimeda were recorded mainly attached to the rocky substrate. In particular H. copiosa was identified growing exclusively on rocks; these macroalgae occur as formations in chains that hang vertically below rocky ledges (Littler and Littler, 2000). Patiño-Espinosa et al. (2022) recorded growth of Halimeda spp. in the Parque Nacional Arrecifes Xcalak on sand and coral skeletons. On the Mexican coasts of the Gulf of Mexico and the Caribbean Sea, species of Halimeda have been found on psammophytic and epizoic substrates (Garduño-Solórzano et al., 2005). Unlike what has previously been described, in the PNAC they have been observed growing on rocks, sand and sessile animals (sponges and corals). González-Gándara et al. (2007) mentioned that habitats with shallow waters and a sandy substrate favor the growth of species of Halimeda and Udotea. However, in this study, species of these genera were identified at depths of up to 30 m or in habitats with little light (caves, cracks or fissures in rocks), which is similar to that recorded by Mendoza-González et al. (2000).

Epiphytic diversity

With respect to epiphytic species, we identified twelve, nine of which were strictly so (Appendix). This number is lower compared to what was reported on the coasts of Quintana Roo by Aguilar Rosas et al. (1998), Mateo-Cid and Mendoza-González (1991) and Quan-Young et al. (2006), who reported that the high degree of epiphytism is a common situation in the regional flora. The difference could be related to the characteristics of the substrate and tidal level, since those studies refer to hard substrates at depths of up to 2 m, while in the present one, epiphytic algae were identified at depths of up to 30 m and growing mainly on the thallus of other macroalgae. In addition, not all epiphytic algae were identified, only those with the highest incidence, which could have inferred the number of species recorded.

Distribution peer reef

Regarding the distribution of species per reef studied, it was observed that Dictyota pinnatifida, Halimeda copiosa, Penicillus dumetosus, Penicillus pyriformis, Rhipocephalus phoenix, Udotea cyathiformis and Udotea cyathiformis f. infundibulum occurred in all the reefs, while Dictyota guineënsis, Lobophora guadeloupensis, Caulerpa cupressoides var. flabellata, Penicillus lamourouxii, Udotea cf. unistratea, Cladophora catenata, Cladophora liniformis and Rhizoclonium riparium only in some of them. This provides important information on the biology of the species (life cycle, reproduction, physiology or morphology) and offers an explanation of their possible distribution patterns, which determine their presence or absence in relation to type of substrate (Hernández et al., 2021). With respect to the collection season, although there were differences in the number of species reported, there were no evident differences in the species composition or the type of substrate in which each species proliferated, which remained homogeneous over time.

Finally, this study, in addition to offering specific information on the species present in 14 PNAC reefs, is the first contribution for the island of Cozumel that includes morphological descriptions and photographic references of the species recorded, information that can be used in other future studies such ecology, biogeography and conservation of marine macroalgae. However, it is essential to continue with these studies that can facilitate the constant monitoring of the biotic elements of the PNAC that, in turn, allow determining the state of health of the reefs and guarantee a sustainable management of the ecosystem, considering that it is an area economically important for its characteristics in terms of flora and fauna composition, which favors the development of sports, recreational, tourist and fishing activities that make it a site of human interest. Likewise, it is important to carry out phycofloristic studies that integrate molecular tools with detailed characterizations that allow estimating the real species richness of the area and contribute robustly to the integration of knowledge of the diversity of Mexican marine algae.

Acknowledgments

We thank the Parque Nacional Arrecifes de Cozumel for the logistical support for some field samplings to Diana Martínez, Blanca Quiroga and Luis Chan Betancourt. We are also grateful to Gabriel Nayar, Gabriel Escalera, Antonio Balam and Luis Raz of the “Scuba Du” diving center, Cozumel. We thank the anonymous reviewers and the editor for commenting on and improving the manuscript.

Literature cited

Acosta-Calderón, J. A., C. Hernández-Rodríguez, A. C. Mendoza-González and L. E. Mateo-Cid. 2018. Diversity and distribution of Udotea genus J.V. Lamouroux (Chlorophyta, Udoteaceae) in the Yucatan peninsula littoral, Mexico. Phytotaxa 345(3): 179-218. DOI: https://doi.org/10.11646/phytotaxa.345.3.1 [ Links ]

Acosta-Calderón, J. A., L. E. Mateo-Cid and A. C. Mendoza-González. 2016. An updated list of marine green algae (Chlorophyceae, Ulvophyceae) from the Biosphere Reserve of Sian Ka’an, Quintana Roo, Mexico. Check List 12(3): 1-15. DOI: http://dx.doi.org/10.15560/12.3.1886 [ Links ]

Aguilar-Rosas, L. E., R. Aguilar-Rosas y J. Espinoza-Ávalos. 2001. Distribución de las especies de la familia Udoteaceae (Bryopsidales, Chlorophyta) de la península de Yucatán, México. Anales de la Escuela Nacional de Ciencias Biológicas 47(1): 99-108. [ Links ]

Aguilar Rosas, M. A., L. E. Aguilar-Rosas and R. Aguilar-Rosas. 1998. Algas marinas de la región central de Quintana Roo, México. Polibotánica 7(4): 15-32. [ Links ]

Álvarez-Filip, L., M. Millet-Encalada and H. Reyes-Bonilla. 2009. Impact of hurricanes Emily and Wilma on the coral community of Cozumel Island, Mexico. Bulletin of Marine Science 84(3): 295-306. [ Links ]

APIQROO. 2023. Calendario de cruceros para Cozumel. Administración Portuaria Integral de Quintana Roo (APIQROO). Quintana Roo, Mexico. https://servicios.apiqroo.com.mx/programacion/ (consulted, February 2023). [ Links ]

Ardisson, P. L., M. A. May-Kú, M. T. Herrera-Dorantes and A. Arellano-Guillermo. 2011. El Sistema Arrecifal Mesoamericano-México: consideraciones para su designación como Zona Marítima Especialmente Sensible. Hidrobiológica 21(3): 261-280. [ Links ]

Camacho, O., L. Mattio, S. Draisma, S. Fredericq and G. Diaz-Pulido. 2015. Morphological and molecular assessment of Sargassum (Fucales, Phaeophyceae) from Caribbean Colombia, including the proposal of Sargassum giganteum sp. nov., Sargassum schnetteri comb. nov. and Sargassum section Cladophyllum sect. nov. Systematics and Biodiversity 13(2): 105-130. DOI: http://dx.doi.org/10.1080/14772000.2015.1009703 [ Links ]

Cetz-Navarro, N. P., J. Espinoza-Avalos, A. Sentíes-Granados and L. I. Quan-Young. 2007. Nuevos registros de macroalgas para el Atlántico mexicano y riqueza florística del Caribe mexicano. Hidrobiológica 18(1): 11-19. [ Links ]

Climate-Data. 2019. Clima San Miguel de Cozumel. https://es.climate-data.org/america-del-norte/mexico/quintana-roo/san-miguel-de-cozumel-25823/ (consulted, December 2022). [ Links ]

Collado-Vides, L., A. M. Suárez and R. Cabrera. 2009. Una revisión taxonómica del género Udotea en el Caribe mexicano y cubano. Revista de Investigaciones Marinas 30(2): 145-161. [ Links ]

Collado-Vides, L., I. Ortegón-Aznar, A. Sentíes Granados, L. Comba-Barrera and J. González-González. 1998. Macroalgae of Puerto Morelos Reef System, Mexican Caribbean. Hidrobiológica 8(2): 133-143. [ Links ]

CONANP. 2004. Programa de manejo Parque Nacional Arrecifes de Xcalak. Comisión Nacional de Áreas Naturales Protegidas (CONANP). Cd. Mx., México. 38 pp. [ Links ]

Cruz-Francisco, V., R. E. Orduña-Medrano and M. González-González. 2020. Lista actualizada de la flora marina bentónica de cinco arrecifes coralinos del norte de Veracruz, México. Revista Ciencias Marinas y Costeras 12(1): 69-97. DOI: http://dx.doi.org/10.15359/revmar.12-1.4 [ Links ]

Cuevas Sánchez, E., K. M. Dreckmann, M. L. Núñez Resendiz and A. Sentíes. 2022. Listado sistemático actualizado de las macroalgas estuarinas de Veracruz, México. Acta Botanica Mexicana 129: e2105. DOI: https://doi.org/10.21829/abm129.2022.2105 [ Links ]

Davin, T. B and A. P. Brannet. (eds.). 2010. Coral reefs: biology, threats and restoration. Nova Science Publishers, Inc. New York. USA. 269 pp. [ Links ]

DOF. 2015. Acuerdo por el que se da a conocer el resumen del programa de manejo del área natural protegida con carácter de área de protección de flora y fauna la porción norte y la franja costera oriental, terrestres y marinas de la isla de Cozumel. Diario Oficial de la Federación. Quintana Roo, Mexico. 77 pp. [ Links ]

DOF. 2022. Título de Concesión otorgado en favor de la empresa Muelles del Caribe, S.A. de C.V., para usar y aprovechar bienes de dominio público de la Federación, consistentes en una zona federal marítima para la construcción, operación, aprovechamiento y explotación de una Terminal Marítimo-Portuaria de cruceros, de uso particular, propiedad Nacional, ubicada en el Municipio de Isla de Cozumel, fuera de los límites del Recinto Portuario, en el Estado de Quintana Roo. Diario Oficial de la Federación. Quintana Roo, Mexico. 11 pp. [ Links ]

Dutra, L. X. C., M. D. E. Haywood, S. Singh, M. Ferreira, J. E. Johnson, J. Veitayaki, S. Kininmonth, C. W. Morris and S. Piovano. 2021. Synergies between local and climate-driven impacts on coral reefs in the Tropical Pacific: A review of issues and adaptation opportunities. Marine Pollution Bulletin 164: 1-17. DOI: https://doi.org/10.1016/j.marpolbul.2020.111922 [ Links ]

Galicia García, C. and A. Morales García. 2007. Investigaciones sobre macroalgas realizadas en el Sistema Arrecifal Veracruzano. In: Granados Barba, A., L. G. Abarca Arenas and J. M. Vargas Hernández (eds.). Investigaciones Científicas en el Sistema Arrecifal Veracruzano. Universidad Autónoma de Campeche. Campeche, México. Pp. 141-160. [ Links ]

García-García, A. M. E., E. Cabrera-Becerril, M. L. Núñez Resendiz, K. M. Dreckmann and A. Sentíes. 2020. Actualización taxonómica de las algas rojas (Rhodophyta) marinas bentónicas del Atlántico mexicano. Acta Botanica Mexicana 127: e1677. DOI: https://doi.org/10.21829/abm127.2020.1677 [ Links ]

García-García, A. M. E., E. Cabrera-Becerril, M. L. Núñez Resendiz, K. M. Dreckmann and A. Sentíes. 2021. Actualización taxonómica de las algas pardas (Phaeophyceae, Ochrophyta) marinas bentónicas del Atlántico mexicano. Acta Botanica Mexicana 128: e1968. DOI: https://doi.org/10.21829/abm128.2021.1968 [ Links ]

Garduño-Solórzano, G., J. L. Godínez-Ortega and M. M. Ortega. 2005. Distribución geográfica y afinidad por el sustrato de las algas verdes (Chlorophyceae) bénticas de las costas mexicanas del Golfo de México y Mar Caribe. Boletín de la Sociedad Botánica de México 76: 61-78. DOI: https://doi.org/10.17129/botsci.1705 [ Links ]

Godínez-Ortega, J. L., P. Ramírez-García and K. Pedraza-Venegas. 2009. Cambios en la flora béntica de Arrecife Hornos (Veracruz, México). TIP Revista Especializada en Ciencias Químico-Biológicas 12(2): 59-65. [ Links ]

Godínez-Ortega, J. L., P. Ramírez-García, A. Granados-Barba and M. J. Wynne. 2019. New records of subtidal benthic marine algae from the state of Veracruz, southern Gulf of Mexico. Revista Mexicana de Biodiversidad 90: e902719. DOI: https://doi.org/10.22201/ib.20078706e.2019.90.2719 [ Links ]

González, A. and D. Torruco. 2015. Distribución de las macroalgas en la laguna arrecifal de Banco Chinchorro: arrecife coralino del Caribe mexicano. Gayana Botanica 72(1): 114-124. DOI: http://dx.doi.org/10.4067/S0717-66432015000100014 [ Links ]

González-Gándara, C., M. Cruz-Arellano, C. Domínguez-Barradas, A. Serrano-Solis and A. J. Basáñez-Muñoz. 2007. Macroalgas asociadas a cuatro hábitats del arrecife Tuxpan, Veracruz, México. Revista UDO Agrícola 7(1): 252-257. [ Links ]

González-Solis, A., D. Torruco and Á. D. Torruco-González. 2018. Biodiversidad de macroalgas en arrecifes coralinos de la Sonda de Campeche, el Caribe Mexicano y Belice. Gayana Botanica 75(1): 501-511. DOI: http://dx.doi.org/10.4067/S0717-66432018000100501 [ Links ]

Guiry, M. D. and G. M. Guiry. 2023. AlgaeBase. World-wide electronic publication. National University of Ireland. Galway, Ireland. http://www.algaebase.org (consulted, January 2023). [ Links ]

Hallock, P. 2001. Coral Reefs, Carbonate Sediments, Nutrients, and Global Change. In: Stanley, G. D. (ed.). The History and Sedimentology of Ancient Reef Systems. Springer. Boston, USA. Pp. 388-422. [ Links ]

Hernández, O. E., K. M. Dreckmann, M. L. Núñez Resendiz and A. Sentíes. 2021. Patrones de distribución de la familia Solieriaceae (Gigartinales, Rhodophyta) en México. Acta Botanica Mexicana 128: e1994. DOI: https://doi.org/10.21829/abm128.2021.1994 [ Links ]

Huerta M., L. 1958. Contribución al conocimiento de las algas de los bajos de la Sonda de Campeche, Cozumel e Isla Mujeres. Anales de la Escuela Nacional de Ciencias Biológicas 9(1-4): 115-123. [ Links ]

Hutchings, P., M. J. Kingsford and O. Hoegh-Guldberg (eds.). 2019. The great barrier reef: biology, Environment and Management. Series Coral Reefs of the World. Springer. Dordrecht, Netherlands. 466 pp. [ Links ]

Landa-Cansigno, C., L. E. Mateo-Cid, A. C. Mendoza-González and J. A. Guerrero-Analco. 2019. Macroalgas marinas del litoral rocoso Neovolcánico de Veracruz, México. Acta Botanica Mexicana 126: e1525. DOI: https://doi.org/10.21829/abm126.2019.1525 [ Links ]

León Álvarez, D., C. F. Candelaria Silva, P. Hernández Almaráz and H. León Tejera. 2007. Géneros de algas marinas tropicales de México: I. Algas verdes. Las prensas de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Mx., México. 173 pp. [ Links ]

Littler, D. S. and M. S. Littler. 2000. Caribbean Reef Plants. An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Offshore Graphics Inc. Washington, D.C., USA. 542 pp. [ Links ]

López Gómez, N., H. León-Tejera, L. González-Resendiz, C. Candelaria, P. Ramírez-García and D. Rodríguez. 2022. Macroalgas arrecifales del Pacífico Centro-Sur de México: Estado del arte. Hidrobiológica 32(3): 285-293. [ Links ]

Loreto Viruel, R. M., G. García Beltrán and J. Bezaury Creel. 2017. Caracterización de los arrecifes coralinos de Isla Cozumel, Quintana Roo, México. Amigos de Sian Ka’an 7: 11-40. [ Links ]

Mateo-Cid, L. E. and A. C. Mendoza-González. 1991. Algas marinas bénticas de la isla Cozumel, Quintana Roo, México. Acta Botanica Mexicana 16: 57-87. DOI: https://doi.org/10.21829/abm16.1991.626 [ Links ]

Mateo-Cid, L. E. and A. C. Mendoza-González. 2007. Flora ficológica: diversidad, importancia económica y conservación. In: Mejía-Ortiz, L. M. (ed.). Biodiversidad acuática de la Isla de Cozumel. Plaza y Valdés-Universidad de Quintana Roo. Cd. Mx., México. 422 pp. [ Links ]

Mateo-Cid, L. E., A. C. Mendoza-González and C. Galicia García. 1996. Algas marinas de Isla Verde, Veracruz, México. Acta Botanica Mexicana 36: 59-75. DOI: https://doi.org/10.21829/abm36.1996.762 [ Links ]

Mateo-Cid, L. E., A. C. Mendoza-González and R. B. Searles. 2006. A checklist and seasonal account of the deepwater Rhodophyta around Cozumel Island on the Caribbean coast of Mexico. Caribbean Journal of Science 42(1): 39-52. [ Links ]

Mayakun, J. and A. Prathep. 2019. Calcium carbonate productivity by Halimeda macroloba in the tropical intertidal ecosystem: The significant contributor to global carbonate budgets. Phycological Research 67(2): 94-101. DOI: http://dx.doi.org/10.1111/pre.12361 [ Links ]

Mendoza-González, A. C., L. E. Mateo-Cid and R. B. Searles. 2000. New records of benthic marine algae from isla Cozumel, Mexico: Phaeophyta and Chlorophyta. Bulletin of Marine Science 66(1): 119-130. [ Links ]

Mendoza-González, A. C., L. E. Mateo-Cid and R. B. Searles. 2007. Yucatán seaweeds from the offshore waters of Isla Mujeres, Quintana Roo, Mexico. Botanica Marina 50(5-6): 280-287. DOI: http://dx.doi.org/10.1515/BOT.2007.032 [ Links ]

Mendoza-González, A. C., L. E. Mateo-Cid, D. Y. García-López and J. A. Acosta-Calderón. 2014. Diversity and Distribution of articulated Coralline algae (Rhodophyta, Corallinales) of the Atlantic coast of Mexico. Phytotaxa 190(1): 45-63. DOI: http://dx.doi.org/10.11646/phytotaxa.190.1.6 [ Links ]

Mendoza-González, A. C., L. E. Mateo-Cid, D. Y. García-López, J. A. Acosta-Calderón, A. Vázquez-Rodríguez, C. M. Hernández-Casas and A. G. Garduño-Acosta. 2016. Marine seaweeds of the Yucatan Peninsula: Diversity, economic importance and conservation. In: Riosmena-Rodríguez, R. (ed.). Marine Benthos: Biology, Ecosystem Functions and Environmental Impact. Nova Science Publishers, Inc. Hauppauge, USA. 289 pp. [ Links ]

Nava-Olvera, R., L. E. Mateo-Cid, A. C. Mendoza-González and D. Y. García-López. 2017. Macroalgas, microalgas y cianobacterias epífitas del pasto marino Thalassia testudinum (Tracheophyta: Alismatales) en Veracruz y Quintana Roo, Atlántico mexicano. Revista de Biología Marina y Oceanografía 52(3): 429-439. DOI: http://dx.doi.org/10.4067/S0718-19572017000300002 [ Links ]

Núñez Resendiz, M. L., K. M. Dreckmann, A. Sentíes, M. J. Wynne and H. León-Tejera. 2019. Marine red algae (Rhodophyta) of economic use in the algal drifts from the Yucatan Peninsula, Mexico. Phytotaxa 387(3): 219-240. DOI: http://dx.doi.org/10.11646/phytotaxa.387.3.3 [ Links ]

Orellana, R. F., F. Nava and C. Espadas. 2007. El clima de Cozumel y la Riviera Maya. In: Mejía Ortíz L. M. (ed.). Biodiversidad acuática de la Isla de Cozumel. Plaza y Valdés-Universidad de Quintana Roo. Cd. Mx., México. 422 pp. [ Links ]

Patiño-Espinosa, S. G., G. Acosta-González and P. L. Ardisson. 2022. Diversidad de macroalgas bentónicas y su relación con el sustrato en el Parque Nacional Arrecifes de Xcalak, Quintana Roo. Revista Mexicana de Biodiversidad 93: e933953. DOI: https://doi.org/10.22201/ib.20078706e.2022.93.3953 [ Links ]

Pellizzari, F. M., J. Bernardi, E. M. Silva, M. C. Silva and N. S. Yokoya. 2014. Benthic marine algae from the insular areas of Paraná, Brazil: new database to support the conservation of marine ecosystems. Biota Neotropica 14(2): e20130011. DOI: http://dx.doi.org/10.1590/1676-060320140615183049 [ Links ]

Pereira Cuni, L. B., K. L. G. González García and Y. Hernández Rivera. 2023. Bioactivos marinos en la cosmética: Una revisión. Revista de Investigaciones Marinas 43(1): 108-120. DOI: https://doi.org/10.5281/zenodo.8018807 [ Links ]

Piñón-Gimate, A., T. Chávez-Sánchez, A. Mazariegos-Villarreal, E. F. Balart and E. Serviere-Zaragoza. 2020. Species richness and composition of macroalgal assemblages of a disturbed coral reef in the Gulf of California, Mexico. Acta Botanica Mexicana 127: e1653. DOI: http://dx.doi.org/10.21829/abm127.2020.1653 [ Links ]

PMDC. 2021. Plan Municipal de Desarrollo de Cozumel. Cozumel Ayuntamiento 2021-2022. Cozumel, Mexico. https://cozumel.gob.mx/wp-content/uploads/2022/04/Plan-Municipal-de-Desarrollo-de-Cozumel-2021-2024.pdf (consulted, September 2023). [ Links ]

Puyana, M. 2017. The fate of corals: ¿will they overcome competition with algae and Cyanobacteria in a changing environment? In: Duque, C. B. and E. C. Tello (eds.). Corals in a changing world. Intech Open. Bogotá, Colombia. Pp. 121-142. [ Links ]

Quan-Young, L. I., M. A. Díaz-Martín and J. Espinoza-Avalos. 2004. Floristics, cover, and phenology of marine macroalgae from Bajo Pepito, Isla Mujeres, Mexican Caribbean. Bulletin of Marine Science 75(1): 11-25. [ Links ]

Quan-Young, L. I., M. A. Díaz-Martín and J. Espinoza-Avalos. 2006. Algas epífitas de Bajo Pepito, Isla Mujeres, Quintana Roo, México. Revista de Biología Tropical 54(2): 317-328. DOI: https://doi.org/10.15517/rbt.v54i2.13872 [ Links ]

Reyes-Bonilla, H. 2011. Monitoreos complementarios de algas, invertebrados y peces en el Parque Nacional Arrecifes de Cozumel. Universidad Autónoma de Baja California Sur-Informe final-Sistema Nacional de Información sobre Biodiversidad de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Cd. Mx., México . 68 pp. [ Links ]

Richardson, J. P. and M. Ginger. 1994. Field guide to common marine algae of San Salvador Island, Bahamas. Bahamian Field Station. San Salvador, Bahamas. 91 pp. [ Links ]

Rioja-Nieto, R., X. Chiappa-Carrara and C. Sheppard. 2012. Efectos de los huracanes sobre la estabilidad de paisajes asociados con arrecifes coralinos. Ciencias Marinas 38(1A): 47-55. [ Links ]

Robinson, N. M., C. Galicia-García and Y. B. Okolodkov. 2012 New records of green (Chlorophyta) and brown algae (Phaeophyceae) for Cabezo Reef, National Park Sistema Arrecifal Veracruzano, Gulf of Mexico. Acta Botanica Mexicana 101: 11-48. DOI: https://doi.org/10.21829/abm101.2012.24 [ Links ]

Rodríguez-Martínez, R. E., A. T. Banaszak, M. D. McField, A. U. Beltrán-Torres and L. Álvarez-Filip. 2014. Assessment of Acropora palmata in the Mesoamerican Reef System. PLOS One 9(4): e96140. DOI: http://dx.doi.org/10.1371/journal.pone.0096140 [ Links ]

Roth, M. S. 2014. The engine of the reef: photobiology of the coral-algal symbiosis. Frontiers in Microbiology 5(422): 1-22. DOI: https://doi.org/10.3389/fmicb.2014.00422 [ Links ]

Sánchez-Molina, I., J. González-Ceballos, C. Zetina-Moguel and R. Casanova-Cetz. 2007. Análisis de la biodiversidad de algas marinas situadas entre Uaymitún y Chuburná, Yucatán. Ingeniería 11(1): 43-51. [ Links ]

Sansone, F. J., H. L. Spalding and C. M. Smith. 2017. Sediment Biogeochemistry of Mesophotic Meadows of Calcifying Macroalgae. Aquatic Geochemistry 23: 141-164. DOI: http://dx.doi.org/10.1007/s10498-017-9315-9 [ Links ]

Santander, L. C. B. 2009. Impacto ambiental del turismo de buceo en los arrecifes coralinos de Cozumel, México. Tesis de Doctor en Geografía. Facultad de Filosofía y Letras, Uiversidad Nacional Autónoma de México. Cd. Mx., México. 303 pp. [ Links ]

Santelices, B. 1977. Ecología de algas marinas bentónicas. Efectos de factores ambientales. Pontificia Universidad Católica de Chile. Santiago de Chile, Chile. 488 pp. [ Links ]

Schneider, C. W. and R. B. Searles. 1991. Seaweeds of the southeastern United States: Cape Hatteras to Cape Canaveral. Duke University Press. Carolina del Norte, USA. 553 pp. [ Links ]

Secaira, F. J., G. R. Borja and C. A. R. Acevedo. 2017. Protección costera proporcionada por los arrecifes y dunas en el Caribe Mexicano - resumen. Serie técnica: El papel de los sistemas naturales en la dinámica costera en el Caribe mexicano. The Nature Conservancy. Mérida, Mexico, 37 pp. [ Links ]

Se-Kwon, K. 2012. Handbook of Marine Macroalgae Biotechnology and Applied Phycology. Wiley-Blackwell. Oxford, UK. 567 pp. [ Links ]

Sheppard, C. R. C., S. K. Davy and M. P. Graham. 2009. The biology of coral reefs. University press. Oxford, UK. 339 pp. [ Links ]

Spalding, M., L. Burke, S. A. Wood, J. Ashpole, J. Hutchison and P. Z. Ermgassen. 2017. Mapping the global value and distribution of coral reef tourism. Marine Policy 82(1): 104-113. DOI: https://doi.org/10.1016/j.marpol.2017.05.014 [ Links ]

Thiers, B. 2023. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s. New York, USA. http://www.nybg.org/bsci/ih/ih.html (consulted, March 2023). [ Links ]

Underwater Editions. 2003. Cozumel Dive Guide and Logbook. Underwater Editions. Quintana Roo, México. 90 pp. [ Links ]

Valadez, C. F., G. G. Rosiles and A. R. Ortega. 2014. Diversidad de algas en la Reserva de la Biósfera Sian Ka´an, Quintana Roo. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes 60: 23-36. [ Links ]

van Tussenbroek, B. I. and M. G. Barba Santos. 2011. Demography of Halimeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. Marine Biology 158: 1461-1471. DOI: http://dx.doi.org/10.1007/s00227-011-1662-2 [ Links ]

Wizemann, A., T. Mann, A. Klicpera and H. Westphal. 2015. Microstructural analyses of sedimentary Halimeda segments from the Spermonde Archipelago (SW Sulawesi, Indonesia): a new indicator for sediment transport in tropical reef islands?. Facies 61: 4. DOI: http://dx.doi.org/10.1007/s10347-015-0429-5 [ Links ]

Wynne, M. J. 2022. A checklist of benthic marine algae of the tropical and subtropical western Atlantic: fifth revision. Nova Hedwigia Beiheft 153: 1-178. [ Links ]

Zucconi, M. G., L. D. Obonaga and E. Londoño-Cruz. 2018. Coralivoría del gasterópodo Jenneria pustulata (Ovulidae: Pediculariinae) en dos arrecifes coralinos del PNN isla Gorgona. Boletín de Investigaciones Marinas y Costeras 47(2): 11-23. DOI: https://doi.org/10.25268/bimc.invemar.2018.47.2.744 [ Links ]

Author contributions

ACR reviewed the sampled material, prepared slides, took measurements, identified and described the specimens, and prepared the manuscript. LGCB is the project responsible, collected biological samples, took field photographs, identificated of species and prepared the manuscript. MLNR supervised the taxonomic identification of the species and the final confirmation of the manuscript. All authors contributed to the literature review, discussion, revision, and approval of the final version of the manuscript.

Funding

This work was conceived and carried out by the Laboratory of Coastal Ecosystems and Laboratory of Phycology, Universidad Autónoma Metropolitana (UAM). The work was carried out with funds from the UAM and Comisión Natural de Áreas Naturales Protegidas/Programa de Conservación para el Desarrollo Sostenible CONANP/PROCODES/6540/2018 granted to LGCB. The Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), through the scholarship granted to ACR to carry out their Master studies in Biology (No. 801906).

Appendix

Appendix Distribution of macroalgae from the in the Parque Nacional Arrecifes de Cozumel, Quintana Roo, Mexico, by reef, indicating the substrate affinity. Reefs: Tikila Norte (TN), Tikila Sur (TS), Chankanaab (CK), Tormentos (TM), Yucab (YC), Tunich (TH), Santa Rosa (SR), El Cedral (EC), Paso del Cedral (PDC), Dalila (DL), La Francesa (LF), Palancar Jardines (PJ), Palancar Ladrillos (PL) and Colombia (CB). Collection months: October 2018 (October) and November 2018 (November). Voucher number corresponds to the herbarium specimens. Substrate: epilithic (I), psammophytic (II), epizoic (III) and epiphytic (IV). All collections were made by Laura Georgina Calva Benítez and deposited in the herbarium UAMIZ. * New record for the PNAC, ** First record for Mexico. 

Taxa Reef Collection month and field number Voucher (UAMIZ) Substrate
TN TS CK TM YC TH SR EC PDC LF DL PJ PL CB I II III IV
OCHROPHYTA
Phaeophyceae
Dictyotales
Dictyotaceae
*Dictyota guineënsis (Kützing) P. Crouan x x October: EC15 1471 x
& H. Crouan
November: 1432
LFF24
*Dictyota pinnatifida Kützing x x x x x x x x x x x x x x October: TN15, 1472 x x x
TS13, CK15,
TM12, YC20,
TH20, SR23,
EC16, LF21,
DL18, PJ22, PL18,
CB16
November: 1433
TNN20, TSS17,
CKK17, TMM12,
YCC21, THH21,
SRR26, ECC22,
PDC25, LFF25,
DLL19, PJJ18,
PLL20, CBB19
**Lobophora guadeloupensis N.E. x November: 1434 x
Schultz, F. Rousseau & L.Le Gall TMM13
Fucales
Sargassaceae
*Sargassum cf. cymosum C. Agardh x x x November: 1435 x
SRR27, ECC23,
PDC26
Sporochnales
Sporochnaceae
*Sporochnus pedunculatus (Hudson) C. x x x x x October: TN14, 1473 x
Agardh PJ21
November: 1436
YCC20, LFF23,
DLL18
RHODOPHYTA
Florideophyceae
Corallinales
Corallinaceae
Jania adhaerens J.V. Lamouroux x x x x x x x October: TH14, 1474 x
SR19, DL13, PJ16
November: 1437
TNN15, TSS13,
THH15, SRR20,
DLL14, PLL17
Amphiroa fragilissima (Linnaeus) J.V. x x x x x x x x October: TS11, 1475 x x
Lamouroux TH13, SR18
November: 1438
TNN14, YCC16,
THH14, SRR19,
PDC21, LFF14,
DLL13
Ceramiales
Ceramiaceae x
Centroceras clavulatum (C. Agardh) x x x x x October: YC17, 1453
Montagne LF16, PJ17, PL16
November: 1476
YCC18, LFF16,
PJJ15, PLL18
Ceramium luetzelburgii O.C. Schmidt x x x x x October: LF17, 1439 x
DL14, PJ18, PL17,
CB15
November: 1477
LFF17, DLL15,
PJJ16, PLL19,
CBB17
Gayliella flaccida (Harvey ex Kützing) T.O. x x x x x x October: YC18, 1466 x
Cho & L.M. McIvor TH16, LF18,
DL15
November: 1478
TNN16, TSS14,
THH17, LFF18
Delesseriaceae
*Dasya antillarum (M. Howe) A.J.K. Millar x x x x x x x x November: 1440 x x
TNN17, TSS15,
YCC19, SRR22,
ECC19, PDC22,
LFF19, PJJ17
Dasya pedicellata (C. Agardh) C. Agardh x x x x x x x x October: YC19, 1441 x x x
TH17, SR21,
EC14, DL16, PJ20
November: 1479
THH18, SRR23,
ECC20, PDC23,
LFF20, DLL17
Rhodomelaceae
Laurencia intricata J.V. Lamouroux x x x x x October: TN13, 1480 x x x
LF20
November: 1442
TNN18, SRR24,
ECC21, PDC24,
LFF21
Yuzurua poiteaui (J.V. Lamouroux) x x x x October: TS12, 1443 x x
Martin-Lescanne TH18
November: 1481
TNN19, TSS16,
THH19, LFF22
Polysiphonia atlantica Kapraun & J.N. x x x x October: TH19, 1482 x
Norris SR22, DL17
November: 1444
THH20, SRR25,
CBB18
Wrangeliaceae
*Ptilothamnion speluncarum (Collins & x x x October: LF19, 1445 x
Hervey) D.L. Ballantine & M.J. Wynne PJ19
November: 1483
DLL16
Gigartinales
Cystocloniaceae
Hypnea spinella (C. Agardh) Kützing x x x x October: YC16, 1484 x x x
TH15, SR20
November: 1446
YCC17, THH16,
SRR21, LFF15
CHLOROPHYTA
Ulvophyceae
Bryopsidales
Caulerpaceae
*Caulerpa cupressoides var. flabellata x x October: TM1, 1485 x
Børgesen YC1
November: YCC1 1447
Derbesiaceae
Derbesia marina (Lyngbye) Solier x x x x x x x x x x x x x x October: TN12, 1486 x x x x
TS10, CK13,
TM11, YC14,
TH12, SR16,
EC13, LF15,
DL12, PJ15, PL14,
CB14
November: 1448
TNN13, TSS12,
CKK15, TMM11,
YCC14, THH13,
SRR17, ECC17,
PDC19, LFF13,
Dichotomosiphonaceae
*Avrainvillea asarifolia Børgesen x x x x x October: TN1, 1487 x
LF1
November: 1449
TNN1, SRR1,
PDC1, PLL1
Halimedaceae
YCC2, THH1,
Halimeda copiosa Goreau & E.A. Graham x x x x x x x x x x x x x x October: TN2, 1488 x
TS1, CK1, TM2,
YC2, TH1, SR1,
EC1, LF2, DL1,
PJ1, PL1, CB1
November: 1450
TNN2, TSS1,
CKK1, TMM1,
SRR2, ECC1,
PDC2, LFF1,
DLL1, PJJ1, PLL2,
CBB1
Halimeda opuntia (Linnaeus) J.V. x x x x x x x x x x x x x October: TN3, 1489 x x x
Lamouroux CK2, TM3, YC3,
TH2, SR2, EC2,
LF3, DL2, PJ2,
PL2, CB2
November: 1451
TNN3, CKK2,
TMM2, YCC3,
THH2, SRR3,
ECC2, PDC3,
LFF2, DLL2, PJJ2,
PLL3, CBB2
*Halimeda scabra M. Howe x x x x x x x x x x x x x October: TN4, 1452 x x x
TS2, CK3, TH3,
SR3, LF4, DL3,
PJ3, CB3
November: 1490
TNN4, TSS2,
CKK3, TMM3,
THH3, SRR4,
Halimedatuna (J. Ellis & Solander) J.V. x x x x x x x x x x x October: TN5, 1453 x x
Lamouroux YC4, SR4, EC3,
DL4, PJ4, PL3,
CB4
November: 1491
TNN5, TSS3,
YCC4, SRR5,
ECC4, PDC5,
LFF4, DLL3, PJJ4,
PLL5, CBB4
Halimeda tuna f. platydisca (Decaisne) x x x x x x x x October: YC5, 1454 x x x
E.S. Barton SR5, EC4, LF5,
DL5, PL4, CB5
November: 1492
YCC5, ECC5,
PDC6, DLL4,
PLL6, CBB5
Penicillus dumetosus (J.V. Lamouroux) x x x x x x x x x x x x x x October: TN6, 1455 x x x
Blainville TS3, CK4, TM4,
YC6, TH4, SR6,
EC5, LF6, DL6,
PJ5, PL5, CB6
November: 1493
TNN6, TSS4,
CKK4, TMM4,
YCC6, THH4,
SRR6, ECC6,
PDC7, LFF5, PJJ5,
PLL7, CBB6
Penicillus lamourouxii Decaisne x x November: 1456 x
ECC7, LFF6
Penicillus pyriformis A. Gepp & E.S. Gepp x x x x x x x x x x x x x x October: TN7, 1494 x x
TS4, CK5, TM5,
YC8, TH5, SR7,
EC6, LF7, PJ6,
PL6, CB7
November: 1457
TNN7, TSS5,
CKK5, TMM5,
YCC7, THH5,
Rhipiliopsis sp. x x x x x x x x x x October: TS5, 1495 x x
CK6, TM6, SR8,
EC7, LF8, DL7,
PL7, CB8
November: TSS6, 1458
CKK6, TMM6,
SRR8, ECC9,
PDC9, LFF8,
PLL9, CBB8
Rhipocephalus oblongus (Decaisne) x x x x x x x x October: YC9, 1459 x x
Kützing TH6, SR9, LF9,
PJ7, CB9
November: 1496
YCC8, THH6,
SRR9, PDC10,
DLL6, PJJ6, CBB9
*Rhipocephalusphoenix (J. Ellis & x x x x x x x x x x x x x x October: TN8, 1460 x x x
Solander) Kützing CK7, TM7, YC10,
TH7, SR10, EC8,
LF10, DL8, PJ8,
PL8, CB10
November: 1497
TNN8, TSS7,
CKK7, TMM7,
YCC9, THH7,
SRR10, ECC10,
PDC11, LFF9,
PJJ7, PLL10,
CBB10
Udotea cyathiformis Decaisne x x x x x x x x x x x x x x October: TN9, 1461 x x
TS6, CK8, TM8,
YC11, SR11, EC9,
LF11, DL9, PJ9,
PL9, CB11
November: 1498
TNN9, TSS8,
CKK8, TMM8,
YCC10, THH8,
SRR11, ECC11,
PDC12, LFF10,
DLL7, PJJ8,
PLL11, CBB11
*Udotea cyathiformis f. infundibulum (J. x x x x x x x x x x x x x x October: TS7, 1462 x x x
Agardh) D.S. Littler & M.M. Littler CK9, TM9, YC12,
TH8, SR12, EC10,
LF12, DL10, PJ10,
PL10, CB12
November: 1499
TNN10, TSS9,
CKK9, TMM9,
YCC11, THH9,
SRR12, ECC12,
PDC13, LFF11,
DLL8, PJJ9,
PLL12, CBB12
*Udotea cyathiformis f. sublittoralis (W.R. x x x x x x x October: CK10, 1463 x
Taylor) D.S. Littler & M.M. Littler TH9, SR13, PJ11,
PL11
November: 1500
CKK10, TMM10,
THH10, SRR13,
PDC14, PJJ10
Udotea dixonii D.S. Littler & M.M. Littler x x x x x x x x x x x October: TM10, 1501 x x
TH10, LF13,
DL11, PJ12, PL12
November: 1464
CKK11, THH11,
SRR14, ECC13,
PDC15, DLL9,
PJJ11, PLL13,
CBB13
*Udotea luna D.S. Littler & M.M. Littler x x x x x x x x x x x x October: TN10, 1502 x x
TS8, CK11, TH11,
SR14, EC11,
LF14, PJ13, PL13,
CB13
November: 1465
TNN11, TSS10,
CKK12, THH12,
SRR15, ECC14,
PDC16, LFF12,
DLL10, PJJ12,
PLL14, CBB14
Udotea unistratea D.S. Littler & M.M. x x x x x x October: CK12, 1466 x x
Littler YC13, SR15,
EC12, PJ14
November: 1503
CKK13, YCC12,
SRR16, ECC15,
PDC17, PJJ13
*Udotea cf. unistratea D.S. Littler & M.M. x x November: 1467 x x
Littler ECC16, PDC18
Cladophorales
Cladophoraceae
Cladophora catenata Kützing x x x October: TN11, 1504 x x
TS9
November: 1468
TNN12, TSS11,
CKK14
*Cladophora liniformis Kützing x October: YC14 1505 x
November: 1469
YCC13
*Rhizoclonium riparium (Roth) Harvey x October: CK14 1506 x
November: 1468
CKK16
Ulvales
Ulvaceae
*Ulva intestinalis Linnaeus x x x x x x x October: YC15, 1507 x x x
SR17, PL15
November: 1470
YCC15, SRR18,
ECC18, PDC20,
DLL12, PLL16,
CBB16

Received: August 29, 2023; Revised: October 04, 2023; Accepted: November 13, 2023; Published: November 30, 2023

2Author for correspondence: anahis293121@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License