SciELO - Scientific Electronic Library Online

 
vol.43 número3Distribución actual, potencial y ecofisiográfica de especies de calabaza en Nayarit, MéxicoV240, nueva variedad subtropical de maíz Comiteco índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista fitotecnia mexicana

versión impresa ISSN 0187-7380

Rev. fitotec. mex vol.43 no.3 Chapingo jul./sep. 2020  Epub 14-Ago-2023

https://doi.org/10.35196/rfm.2020.3.343 

Notas Científicas

Morphological characterization of buffelgrass with potential for forage and seed production

Caracterización morfologica de genotipos de pasto buffel con potencial para producción de forraje y semilla

Ricardo A. Sánchez-Gutiérrez1  4 

Jean Hanson2 

Chris Jones2 

Pedro Jurado-Guerra3 

Eduardo Santellano-Estrada4 

Alicia Melgoza-Castillo4 

Carlos Morales-Nieto4  * 

1Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Zacatecas. Calera de Víctor Rosales, Zacatecas, México.

2International Livestock Research Institute, Addis Ababa, Ethiopia.

3INIFAP, Sitio Experimental Aldama-La Campana, Aldama, Chihuahua, México.

4Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología, Chihuahua, Chihuahua, México.


Summary

Buffel grass (Pennisetum ciliare L.) is an important forage species. It is necessary to continue exploring the natural variability of this grass and select materials with potential for livestock. Currently, the International Livestock Research Institute (ILRI) in Ethiopia preserves ex situ 157 buffel materials; it is important to characterize them to identify materials with productive potential. The objective of this study was to determine the phenotypic diversity of 147 ecotypes and 10 cultivars of buffelgrass to identify materials with potential forage and seed production. The study was conducted in 2014 at the Zwai Experiment Station in Ethiopia. Materials were established in the field with 36 plants per plot. Variables indirectly measured to identify ecotypes with potential for seed yield were: panicles per plant (PP), spikelets per panicle (SP), caryopses per panicle (CP) and days to 50 % flowering (DF), while for forage production variables were plant height (PH, cm) and forage height (FH, cm). Cluster and discriminant analyses were performed. The buffelgrass collection showed large variability in all measured characteristics. The plant and forage height ranges were: from 34 to 139 and from 24 to 118 cm, respectively. Variation of PP ranged from 6 to 322, SP from 13 to 285 and CP from 3 to 113. The standardization cut at 50 % flowering ranged from 48 to 71 days. A high correlation coefficient (r = 0.98) was observed between plant height and forage height and there was a negative correlation (r = -0.62) between panicles per plant and days to 50 % flowering. Four groups (P < 0.0001) were identified for the 157 materials. With the exception of FH, the rest of variables significantly contributed to the separation of groups. The buffelgrass collection presented high variability in the measured characteristics; also, ecotypes 1442, 19448, 19457, 19459, 19462 and 19464 showed forage potential.

Index words: Pennisetum ciliare; characterization; diversity; ecotypes; forage; seed

Resumen

El pasto buffel (Pennisetum ciliare L.) es una especie forrajera importante. Es necesario continuar con la exploración de la variabilidad natural de este pasto y seleccionar materiales con potencial para la ganadería. Actualmente el Instituto Internacional de Investigaciones Pecuarias (ILRI, por sus siglas en inglés) en Etiopía conserva de manera ex situ 157 materiales de buffel; es importante caracterizarlos para identificar materiales con potencial productivo. El objetivo del presente estudio fue determinar la diversidad fenotípica de 147 ecotipos y 10 variedades de pasto buffel e identificar materiales con potencial de producción de forraje y semilla. El estudio se realizó en 2014 en la estación experimental Zwai en Etiopía. Los materiales se establecieron en parcelas con 36 plantas cada una. Las variables medidas indirectamente para identificar ecotipos con potencial para la producción de semilla fueron: panículas por planta (PP), espiguillas por panícula (EP) cariópsides por panícula (CP) y días a 50 % de floración (DF), mientras que para producción de forraje las variables fueron altura de planta (AP, cm) y de forraje (AF, cm). Se realizaron análisis de agrupamiento y discriminante. La colección de pasto buffel mostró alta variabilidad en todas las características medidas. Los intervalos de altura de planta y forraje fueron de 34 a 139 y de 24 a 118 cm, respectivamente. La variación de PP fue de 6 a 322, EP de 13 a 285 y para CP fue de 3 a 113. El corte de estandarización al 50 % de floración fue de 48 a 71 días. Se observó una alta correlación (r = 0.98) entre altura de planta y de forraje, y una correlación negativa (r = -0.62) entre panículas por planta y días al 50 % de floración. Cuatro grupos (P < 0.0001) fueron identificados para los 157 materiales. Con excepción de AF, las demás variables contribuyeron significativamente a la separación de grupos. La colección de pasto buffel presentó alta variabilidad en las características medidas; además, los ecotipos 1442, 19448, 19457, 19459, 19462 y 19464 mostraron potencial forrajero.

Palabras clave: Pennisetum ciliare; caracterización; diversidad; ecotipos; forraje; semilla

Introduction

The main limitation of livestock production in Africa is the instability in yield and low quality of native forage species (Pamo et al., 2007). Buffelgrass [Pennisetum ciliare (L.) Link] is a C4, apomictic species, common in the Africa subtropics. It has been introduced into arid and semiarid areas around the world, as Argentina (Carloni-Jarrys et al., 2018) because of its high forage production potential, soil erosion control, and drought tolerance (Quiroga et al., 2013). Genetic diversity for forage traits in buffelgrass offers an opportunity to make selection and to develop new varieties with good production to face the challenges of climate change. There is currently a high demand for forage to feed livestock in areas with low precipitation, thus justifying plant breeding programs (Carloni-Jarrys et al., 2018) to improve forage production, forage quality and seed yield. There are morpho-agronomic characteristics associated with forage production and seed yield, which can be measured to get a better understanding of the potential within the species (Ribeiro et al., 2019; Wassie et al., 2018). Exploring the natural variability through a morphological characterization could be used to select the best accessions with some characteristics of interest (Alves et al., 2014). The International Livestock Research Institute (ILRI) holds a collection of 157 accessions of buffelgrass in its field genebank in Ethiopia; thus, it is necessary to perform a phenotypic characterization of this germoplasm to identify novel sources of variation, as well as outstanding plant material. The objectives of this study were to determine phenotypic diversity of 147 accessions and 10 cultivars of buffelgrass in Zwai, Ethiopia, and to identify the best accessions with characteristics for forage and seed production.

Materials and methods

The study was carried out at the Zwai Experiment Station of ILRI in Ethiopia, located at 7° 54&apos; N, 38° 44&apos; E and altitude of 1640 masl. The average annual precipitation is 600 mm and the peak concentration of rainfall is recorded between July and September. The average annual minimum and maximum temperatures are 13 and 27 °C, respectively. Soil is loamy sand with 0.5 m depth and pH from 8.1 to 8.4.

Accessions were planted at least ten years before this study and each accession was established into a 2 × 5 m unreplicated plot, 36 plants per plot with 50 cm separation. The accessions and cultivars maintained in the field genbank came from 10 African countries (Table 1). Some accessions and cultivars were donated by other programs and their origin was unknown. Plots were irrigated five times during the dry season only for maintenance, and 200 kg of nitrogen and 60 kg of phosphorus per hectare were applied.

Table 1 List of accessions and cultivars used in the characterization study and the assignment to the corresponding group. 

Acc/C Country Group Acc/C Country Group Acc/C Country Group Acc/C Country Group
American Kenya 3 13299 Kenya 2 19381 Ghana 1 19440 Kenya 1
Biloela Tanzania 2 13404 Ethiopia 2 19382 1 19441 Tanzania 3
Boorara 2 13406 Ethiopia 3 19385 Tanzania 1 19442 Zimbabwe 4
Gayndah Kenya 2 13407 Ethiopia 2 19386 Tanzania 1 19443 Zimbabwe 3
Karasberg Nambia 1 13461 Ethiopia 1 19387 Tanzania 1 19444 South A. 3
Kongwa Tanzania 2 13551 Ethiopia 2 19388 Tanzania 1 19447 South A. 1
Molopo 3 13559 Ethiopia 2 19389 Tanzania 1 19448 South A. 4
Nunbank Uganda 1 13562 Ethiopia 2 19390 Tanzania 3 19450 South A. 2
Towoomba South A. 2 13563 Ethiopia 2 19392 Tanzania 2 19451 Botswana 1
Viva Uganda 1 15687 Mauritania 3 19393 Tanzania 1 19452 Botswana 1
777 Tanzania 3 15688 Mauritania 3 19394 Tanzania 3 19453 South A. 1
894 Tanzania 2 16570 Namibia 2 19395 Tanzania 3 19454 Zimbabwe 2
914 Tanzania 2 16583 Namibia 1 19397 Tanzania 1 19455 Namibia 3
1098 Dr Congo 3 16609 Namibia 2 19398 Tanzania 1 19456 2
2020 Ethiopia 3 16630 Namibia 2 19399 Tanzania 1 19457 4
2043 Ethiopia 1 16651 Namibia 2 19400 Tanzania 1 19458 2
2120 Ethiopia 3 16656 Namibia 2 19401 Tanzania 1 19459 4
2122 Ethiopia 3 16660 Namibia 2 19402 Tanzania 3 19460 1
2125 Ethiopia 3 16675 Namibia 2 19403 Tanzania 1 19461 1
2126 Ethiopia 3 16855 Niger 3 19404 Tanzania 1 19462 4
2136 Ethiopia 3 16868 Niger 3 19405 Tanzania 1 19464 South A. 4
2150 Ethiopia 3 18066 Botswana 1 19406 Tanzania 1 19465 Somalia 3
6640 Tanzania 3 18069 Botswana 3 19408 Tanzania 1 19466 Somalia 3
6642 Tanzania 2 18071 Botswana 2 19409 Tanzania 1 19467 Somalia 3
6647 Zimbabwe 1 18073 Botswana 2 19411 Tanzania 1 19468 Somalia 3
8306 Ethiopia 3 18077 Botswana 2 19412 Tanzania 2 19469 Somalia 3
9161 Ethiopia 2 18089 Botswana 2 19413 Tanzania 1 19470 Somalia 3
9162 Ethiopia 2 18094 Botswana 3 19414 Tanzania 1 19472 2
9759 Ethiopia 3 18108 Botswana 2 19417 Tanzania 2 19473 South A. 1
12464 Antigua 3 19366 Dr Congo 1 19418 Tanzania 1 19474 South A. 1
12769 Kenya 3 19368 Botswana 1 19420 Tanzania 1 19475 South A. 2
12771 Kenya 2 19369 Botswana 1 19421 Tanzania 3 19476 South A. 2
12787 Kenya 3 19370 Botswana 3 19422 Tanzania 1 19477 1
12825 Kenya 2 19371 Botswana 2 19425 Tanzania 1 19481 2
12884 Kenya 3 19372 Botswana 1 19428 Tanzania 1 19482 1
13059 Kenya 1 19375 Botswana 1 19429 Tanzania 1 19483 South A. 1
13121 Kenya 2 19376 Botswana 2 19431 1 19492 3
13284 Kenya 2 19377 1 19432 Uganda 3
13288 Kenya 3 19378 2 19436 India 1
13292 Kenya 2 19380 2 19439 Kenya 2

Acc/C: accession number/cultivar name.

On June 16th, 2014, all plants were cut at a height of 150 mm above ground, characterization began on July 16th and finished on December 5th. Six descriptors were recorded from eight plants located at the center of the plot (Van de Wouw et al., 1999); plant height (PH) was measured in cm from the ground level to the tip of all inflorescence, forage height (FH) was also measured in cm from the ground level to the tip of leaves, panicles per plant (PP) was the number of inflorescences per plant. Eight panicles were randomly taken to count the number of spikelets per panicle (SP) and caryopses per panicle (CP). For days to 50 % of flowering (DF), the whole group of plants in the plot was observed and the number of days from cutting until half of the plot reached flowering was registered.

The Pearson correlation coefficient was calculated with the CORR procedure (SAS Institute, 2011) to observe the relationship among variables. Furthermore, a hierarchical cluster analysis using the CLUSTER procedure (SAS Institute, 2011) by the Ward clustering method was performed. Groups were chosen based on PST2 (pseudo-T 2 statistic). To determine the variables with higher discriminating power the STEPDISC procedure (SAS Institute, 2011) was used. The discriminant function for the probability that an accession belonged to a particular group was analyzed with the DISCRIM procedure (SAS Institute, 2011). Also, if a difference between groups was recorded (P ≤ 0.05), a multivariate analysis of variance (MANOVA) with the Wilks’ Lambda statistic was calculated (SAS Institute, 2011).

Results and discussion

The 157 accessions of buffelgrass showed a high degree of diversity in all agro-morphological characteristics measured. Plant and forage height varied from 34 to 138 and from 24 to 118 cm, respectively. Panicles per plant ranged from 6 to 322, days to 50 % flowering were from 48 to 71, spikelets per panicle ranged from 13 to 285 and caryopses per panicle from 3 to 113. The results obtained for plant height were similar to those of previous studies (M’Seddi et al., 2002). In general, our collection showed higher variability in the rest of the traits compared to results reported by Mseddi et al. (2004). This discrepancy could partially be attributed to the higher number of accessions in this collection than the 51 accessions in the aforementioned study, perhaps due to the selection of a broader range of eco-geographical locations.

The results obtained reveal a significant potential of this collection to be used in plant breeding programs. High correlation coefficients (P ≤ 0.0001) were observed between plant height and forage height (r = 0.98), and between panicles per plant and days to 50 % flowering (r = -0.626). The rest of the correlation coefficients were weak. Most advanced accessions showed a higher number of panicles per plant, which agrees with the result in the previously mentioned study of 52 accessions of buffelgrass (Mseddi et al., 2004). Morales et al. (2012) found that in Arizona cottontop [Digitaria californica (Benth.) Henr.] forage height is more closely related to yield than plant height. It might be possible to extrapolate from these results and propose that buffelgrass accessions with large plant height could be used for forage production.

Hierarchical cluster analysis assigned the 157 buffelgrass accessions into four groups (Table 1, Figure 1). Also, MANOVA with Wilks’ Lambda statistic showed differences among these groups (P ≤ 0.0001). Group I included 57 accessions along with Karasberg, Nunbank and Viva cultivars. This group was characterized by early flowering, large plant height, and forage height traits. Group II included 50 accessions and the cultivars Biloela, Boorara, Gayndah, Kongwa and Towoomba. This group was characterized by late flowering, low number of panicles per plant and caryopses per panicle. Group III consisted of 44 accessions and the cultivars American and Molopo, with a larger number of panicles per plant, early flowering and small size. Group IV included six accessions; this group was the tallest one and contained the largest number of spikelets per panicle and caryopses per panicle.

Figure 1 Dendrogram showing the integration of four groups using the Ward method based on agro-morphological characteristics of 157 buffelgrass accessions. 

Discriminant analysis demonstrated that most traits, except FH, contributed to separate clusters (P ≤ 0.05), (Table 2) and the probability that an accession belonged to a particular group was higher than 95 %. The results on days to 50 % flowering and plant height agree with those of previous studies (Griffa et al., 2012; Jorge et al., 2008); however, some groupings among cultivars were different which could also be related to the location and the period when experiments were performed, as plant characteristics are influenced by environmental as well as by genetic factors. Plant height has been shown to positively correlate with yield forage in buffelgrass (Mansoor et al., 2012; Mseddi et al., 2004); hence, Groups I and IV can potentially be used for silage or hay production.

Table 2 Mean and standard deviation of six agro-morphological characteristics of the four groups classified by hierarchical cluster analysis. 

Variables Group I (n = 57) Group II (n = 50) Group III (n = 44) Group IV (n = 6)
PH (cm) 102.9 ± 15 74.3 ± 14 66.3 ± 14 113.8 ± 8
FH (cm) 84.09 ± 14 57.16 ± 13 50.76 ± 13 87.6 ± 11
PP 37 ± 15 21 ± 9 66 ± 53 12 ± 6
SP 86 ± 27 75 ± 19 51 ± 14 217 ± 54
CP 38 ± 19 27 ± 15 21 ± 12 71 ± 21
DF (%) 56 ± 2 61 ± 4 52 ± 3 68 ± 2

Variables with discriminant power (P ≤ 0.05). PH: plant height, FH: forage height, PP: panicles per plant, SP: spikelets per panicle, CP: caryopses per panicle, DF: days to 50 % flowering.

In some species, characteristics such as number of panicles per plant and total number of seeds per panicle have been shown to be related to seed yield (Youssef and Hansson, 2019). Since Groups III and IV have the largest number of panicles per plant and caryopses per panicle, respectively, accessions in these groups could be used to select for improved seed yield in a plant breeding program. The accessions in Group IV could be selected as new cultivars as they have good productivity and seed yield; nevertheless, it should be noted that it is necessary to perform research focused on seed yield and production (Morales-Nieto et al., 2017), as well as on forage quality. It is concluded that the studied collection of 157 accessions of buffelgrass exhibited high variability in all characteristics measured, highlighting the opportunity to improve this species through a breeding program. Accessions 1442, 19448, 19457, 19459, 19462 and 19464, native to South Africa and Zimbabwe, are the tallest ones and have the largest number of spikelets per spike and caryopses per spike; therefore, they may have potential to be included directly in future plant breeding programs for enhancing seed and forage production of buffelgrass.

Bibliography

Alves G. F., U. J. de Figueiredo, A. D. Pandolfi Filho, S. C. L. Barrios and C. B. do Valle (2014) Breeding strategies for Brachiaria spp. to improve productivity - an ongoing project. Tropical Grasslands - Forrajes Tropicales 2:1-3, https://doi.org/10.17138/TGFT(2)1-3 [ Links ]

Carloni-Jarrys E. J., Ma. C. Acosta-Bragato and K. Grunberg-Fraga (2018) Nuclear DNA content and ploidy level in apomictic buffelgrass genotypes. Revista Fitotecnia Mexicana 41:23-29, https://doi.org/10.35196/rfm.2018.1.23-29 [ Links ]

Griffa S., M. Quiroga, A. Ribotta, E. López C., E. Carloni, E. Tommasino, C. Luna and K. Grunberg (2012) Relationship between seed yield and its component characters in Cenchrus spp. Electronic Journal of Plant Breeding 3:701-706. [ Links ]

Jorge M. A. B., M. Van de Wouw, J. Hanson and J. Mohammed (2008) Characterization of a collection of buffelgrass (Cenchrus ciliaris). Tropical Grasslands 42:27-39. [ Links ]

Mansoor U., M. Hameed, A. Wahid and A. R. Rao (2002) Ecotypic variability for drought resistance in Cenchrus ciliaris L. Germplasm from Cholistan Desert in Pakistan. International Journal of Agriculture and Biology 4:392-397. [ Links ]

Morales N. C. R., A. Melgoza C., P. Jurado G., M. Martínez S. y C. Avendaño A. (2012) Caracterización fenotípica y molecular de poblaciones de zacate punta blanca (Digitaria californica (Benth) Henr.). Revista Mexicana de Ciencias Pecuarias 3:171-184. [ Links ]

Morales-Nieto C. R., R. Corrales-Lerma, A. Álvarez-Holguín, F. Villarreal-Guerrero y E. Santellano-Estrada (2017) Caracterización de poblaciones de pasto banderita (Bouteloua curtipendula) de México para seleccionar genotipos con potencial para la producción de semilla. Revista Fitotecnia Mexicana 40:309-316, https://doi.org/10.35196/rfm.2017.3.309-316 [ Links ]

M’Seddi K., M. Visser, M. Neffati, D. Reheul and M. Chaïeb (2002) Seed and spike traits from remnant population of Cenchrus ciliaris L. in South Tunisia: high distinctiveness, no ecotypes. Journal of Arid Environments 50:309-324, https://doi.org/10.1006/jare.2001.0830 [ Links ]

Mseddi K., L. Mnif, M. Chaieb, M. Neffati and M. Roux (2004) Aboveground phytomass productivity and morphological variability of Tunisian accessions of Cenchrus ciliaris L. African Journal of Range and Forage Science 21:49-55, https://doi.org/10.2989/10220110409485833 [ Links ]

Pamo E. T., B. Boukila, F. A. Fonteh, F. Tendonkeng, J. R. Kana and A. S. Nanda (2007) Nutritive value of some grasses and leguminous tree leaves of the Central region of Africa. Animal Feed Science and Technology 135:273-282, https://doi.org/10.1016/j.anifeedsci.2006.07.001 [ Links ]

Quiroga M., K. Grunber, A. Ribotta , E. López C. , E. Carloni , E. Tommasino , C. Luna and S. Griffa (2013) Obtaining sexual genotypes for breeding in buffel grass. South African Journal of Botany 88:118-123, https://doi.org/10.1016/j.sajb.2013.04.016 [ Links ]

Ribeiro S. O., M. C. A. Amaral, W. T. Barros, A. S. Bandeira, A. D. Cardoso and R. C. de Vasconcelos (2019) Quality of top, middle and bottom buffelgrass seeds from different collecting sites. Journal of Agricultural Science 11:264-271, https://doi.org/10.5539/jas.v11n9p264 [ Links ]

SAS Institute Inc (2011) Base SAS® 9.3 Procedures Guide. Statistical Procedures. SAS Institute Inc. Cary, North Carolina, USA. 528 p. [ Links ]

Van de Wouw M., J. Hanson and S. Nokoe (1999) Observation strategies for morphological characterisation of forages. Genetic Resources and Crop Evolution 46:63-71, https://doi.org/10.1023/A:1008627527822 [ Links ]

Wassie W. A., B. A. Tsegay, A. T. Wolde and B. A. Limeneh (2018) Evaluation of morphological characteristics, yield and nutritive value of Brachiaria grass ecotypes in northwestern Ethiopia. Agriculture and Food Security 7:89, https://doi.org/10.1186/s40066-018-0239-4 [ Links ]

Youssef H. M. and M. Hansson (2019) Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Reports 38:1013-1016, https://doi.org/10.1007/s00299-019-02430-0 [ Links ]

Received: May 24, 2018; Accepted: July 06, 2020

* Autor de correspondencia (morales_nieto_c_r_@hotmail.com)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License