Introducción
La transformación y la fragmentación del hábitat se reconocen como las principales amenazas para la diversidad biológica a escala mundial (Fahrig, 2003; Foley et al., 2005); este fenómeno es resultado principalmente de la expansión ganadera y agrícola, así como de la urbanización (Santos y Tellería, 2006). Esto provoca cambios en la estructura y composición de la vegetación y trae efectos negativos tales como la pérdida de especies nativas y la invasión de especies exóticas (Trejo y Dirzo, 2000; Vila e Ibáñez, 2011). De este modo, las transformaciones en el paisaje impactan de distintas formas a las comunidades biológicas, por lo que es necesario generar acciones que permitan la conservación de la biodiversidad (Foley et al., 2005).
Los bosques secos tropicales se encuentran entre los sistemas más amenazados del mundo (Stern et al., 2002). La deforestación es la principal causa de la pérdida de estos ecosistemas en México y América, lo que ha traído como resultado que estas zonas se transformen en agropaisajes dominados por cultivos y por la presencia de ganado (Stern et al., 2002; Trejo y Dirzo, 2000). Esta disminución reduce la biodiversidad (Stern et al., 2002), aunque algunos estudios señalan que estos bosques aún albergan una diversidad alta de especies de fauna y flora (Durán et al., 2006).
Los bosques secos representan un papel crucial al proporcionar una amplia gama de bienes y servicios esenciales tanto para los ecosistemas como para la sociedad (Balvanera y Maass, 2010; Maass et al., 2005). Estos servicios comprenden partes vegetales como frutos, semillas, fibra y resinas y son utilizados por las comunidades locales que los utilizan como alimentación, refugio, vestimenta y utensilios, así como para usos medicinales y culturales (Balvanera y Maass, 2010; Tapia-Tapia y Reyes-Chilpa, 2008). El conocimiento acerca del uso y la importancia de estos productos por parte de las comunidades que habitan en los bosques secos es limitado, por lo tanto, resulta fundamental determinar su relevancia para el uso sostenible de estos recursos vegetales.
La Reserva de la Biosfera Tehuacán-Cuicatlán (RBTC) se compone de diversos tipos de vegetación, entre los que destaca por su extensión el bosque seco tropical, importante porque ahí se ubica el mayor número de asentamientos humanos y varios sistemas productivos (Carranza y Molina, 2003; Semarnat, 2013). Esto ha generado un uso constante de recursos con diferentes fines (alimenticio, medicinal, forraje, combustible) (Casas et al., 2001). Sin embargo, la RBTC mantiene una alta diversidad de recursos vegetales, así como el conocimiento indígena sobre uso y manejo de las plantas locales (Casas et al., 2001; Dávila et al., 2002). En la RBTC se han registrado sistemas productivos tradicionales, los cuales pueden tener una cubierta vegetal, compuesta de franjas o grupos de plantas perennes, cercas vivas y plantas aisladas que fueron parte del bosque original y que se dejan en pie para actividades ganaderas o agrícolas (Casas et al., 2008). Bajo ciertos esquemas de prácticas de manejo y uso tradicional, los sistemas productivos dentro de la RBTC podrían favorecer la conservación de la biodiversidad (Moreno-Calles et al., 2010; Rendón-Sandoval et al., 2020; Zarazúa-Carbajal et al., 2020). El presente trabajo busca contribuir a la identificación y al conocimiento de la vegetación de la RBTC y de su importancia cultural y tradicional que se puedan tener en cuenta para el desarrollo de esquemas de manejo y planes de conservación.
Objetivos
Analizar la composición y estructura de especies arbóreas y arbustivas de la región de la Cañada en la localidad de San Gabriel Casa Blanca dentro de la Reserva de la Biosfera Tehuacán-Cuicatlán, comparar la riqueza y diversidad de las especies en diferentes unidades del paisaje y determinar las principales especies de flora usadas tradicionalmente por la población local, con la finalidad de ampliar el conocimiento para desarrollar esquemas de manejo y planes de conservación.
Materiales y métodos
Área de estudio
El estudio se realizó en los Bienes Comunales de San Gabriel Casa Blanca (SGCB) en el municipio de San Antonio Nanahuatipam en el estado de Oaxaca, México (17° 39’- 18° 53’ 105 N, 96° 55’- 97° 44’ W; Fig. 1). SGCB posee 4812 ha y se encuentra en la porción más norteña de la Cañada Baja Oaxaqueña, ubicada en la Provincia Fisiográfica de las Sierras Centrales del estado de Oaxaca y la Fosa Tectónica de Tehuacán. Se caracteriza por ser una zona seca y cálida que favorece el crecimiento de matorral xerófilo con cactáceas que forman extensos bosques columnares, por el tipo de vegetación, por el número de especies endémicas con algún estatus de conservación, y por su distribución restringida, se encuentran incorporados en el Área Natural Protegida de la RBTC.
CRASS (matorral crassicaule), TDF_C (bosque seco tropical), TDF_Min (bosque seco tropical dominado por Mimosa), TDF_Neo (bosque seco tropical dominado por Neobuxbaumia) y AGRI (Agricultura). (B)
La geología de SGCB presenta formaciones del Paleógeno, Cretácico y Cuaternario, con rocas calizas del Cretácico inferior, areniscas y conglomerados del Terciario inferior, conglomerados del Terciario inferior, calizas-lutitas del Cretácico inferior y lutitas y yeso del Terciario inferior (Instituto Nacional de Estadística y Geografía [Inegi], 2005). La topografía es principalmente montañosa con altitudes entre 800 m y 1400 m; los suelos son de tipo de tipo fluvisoles calcáricos, xerosol haplico, regosoles calcáricos y rendzina (Instituto Nacional de Estadística y Geografía [Inegi], 2005; Ortiz-Pérez et al., 2004). El clima en SGCB corresponde al seco muy seco BS0(h ́)w y Bw(h ́)w con una precipitación media anual menor a los 400 mm, con lluvias concentradas en verano y escasas a lo largo del año; la temperatura media anual es mayor a 18°C. La hidrología corresponde a la cuenca del Río Papaloapan y a la subcuenca del Río Salado y están presentes otras corrientes de agua perennes como el río Calapa y Salado (Instituto Nacional de Estadística y Geografía [Inegi], 2005).
El uso del suelo en SGCB se divide en agrícola (8%), zona urbana (1%), bosque seco tropical (63%) y el matorral crausicaule (28%). La actividad agrícola se enfoca al cultivo de caña de azúcar como respuesta al mercado que ofrece el ingenio ubicado en Tilapa, Puebla. Con base en análisis de imágenes Landsat 8 con resolución de 30 m, los diferentes tipos de vegetación se clasificaron en cinco unidades del paisaje (Fig. 1): 1) bosque seco tropical, dominado por Mimosa spp. (TDF_Min), 2) bosque seco tropical dominado por Neobuxbaumia (TDF_Neo), 3) bosque seco tropical compuesto (TDF_C), nombrado así porque es dominado por diferentes especies del género Bursera spp., 4) matorral crassicaule (CRAS) y 5) agricultura (AGRI) (Barrera-Salazar et al., 2015). SGCB está constituido desde el 2013 como una Unidad para la Conservación y Uso Sustentable de la Vida Silvestre, en su modalidad de UMA extensiva, la cual tiene como finalidad la conservación de la flora y el aprovechamiento legal de algunas especies como el venado cola blanca (Odocoileus virginianus) y el pecarí de collar (Pecari tajacu) (López-Téllez et al., 2016).
Diseño de muestreo de la vegetación
Se desarrolló un muestreo dirigido en cada tipo de vegetación y se establecieron 30 sitios de muestreo en octubre del 2018. La representatividad de los sitios de muestreo se basó en el porcentaje de área de cada tipo de vegetación. Entre cada sitio, se contó con una separación de más de 900 m para asegurar la independencia espacial y en cada uno de ellos se establecieron: una parcela de 20 m x 20 m, para muestrear el estrato arbóreo (diámetro de tallo a 1.30 m de altura); y dos de 5 m × 4 m, para el estrato arbustivo (árboles y arbustos leñosos con diámetro < 10 cm). Se registraron las especies y su número de individuos, altura y los diámetros máximos y mínimos de copa para el cálculo de la cobertura de los árboles en todos los sitios. Se anotó el nombre común de las especies empleado por la gente local, y en algunos casos se colectaron ejemplares botánicos. Para la determinación taxonómica se emplearon guías y claves especializadas de la flora de esta reserva (Arias et al., 1997; Lemos, 2008; Valiente-Banuet, 2009), así como un catálogo de especies elaborado para la localidad de estudio. Se mantuvieron como morfoespecies aquellos especímenes que no pudieron ser identificados.
Estructura de la vegetación
Para cada especie se calcularon: abundancia relativa, dominancia relativa, frecuencia relativa y, con estas, el índice de valor de importancia (Matteucci y Colma, 1982). La abundancia relativa (AR) de la especie i con respecto a la abundancia total se estimó con la ecuación 1, que incluye el cálculo con la ecuación 2.
donde:
Ai = abundancia absoluta de la especie i
Ni = número de individuos de la especie i
S = superficie de muestreo
La dominancia relativa (DR) de la especie i con respecto a la dominancia total se calculó con la ecuación 3, que tiene como insumo a la dominancia absoluta, misma que se calcula con la ecuación 4.
donde:
Di = dominancia absoluta
S = superficie de muestreo
Cp = cobertura de copa de cada especie i
La cobertura de la copa se estimó mediante la fórmula del área de la elipse, calculada como πab, donde a y b son los diámetros mayor y menor de la copa.
La frecuencia relativa (FRi) de la especie i con respecto a la frecuencia total se obtuvo con las ecuaciones 5 y 6.
donde:
donde:
Fi = frecuencia absoluta de la especie i,
Pi = número de sitios en los que está presente la especie i y
NS = número total de sitios de muestreo
El índice de valor de importancia (IVI) se determinó con la ecuación 7:
Estimación de la diversidad
Se utilizaron las cinco unidades del paisaje clasificadas por Barrera-Salazar et al. (20015), como base para los análisis.
Se calculó la diversidad de especies arbóreas y arbustivas con base en los números de Hill: riqueza de especies (q0), diversidad de Shannon (q1) y diversidad de Simpson (q2) (Jost, 2006; Jost y González-Oreja, 2012); q0 indica el número de especies, q1 pondera el número de especies en función de sus abundancias y enfatiza las especies igualmente frecuentes o comunes, y q2 se basa en el inverso del índice de Simpson y enfatiza las especies muy dominantes o abundantes (Jost, 2006) Para comparar la diversidad (q0, q1, q2) entre las diferentes unidades del paisaje, se utilizó el paquete iNEXT del programa R (Chao et al., 2014). Los intervalos de confianza de las curvas de rarefacción se obtuvieron mediante el método bootstrap, basado en 100 réplicas (Chao et al., 2014).
La composición de la vegetación se comparó entre las unidades del paisaje, mediante un análisis de escalamiento multidimensional no métrico (NMDS, por sus siglas en inglés) por estrato. Para determinar diferencias estadísticas en la composición de especies entre cada unidad del paisaje para cada estrato, se realizó un análisis de similitud (Anosim). Estos análisis se realizaron con el paquete Vegan de R (Oksanen et al., 2019). Se realizó la prueba de normalidad Shapiro-Wilks, un análisis de varianza de una vía (ANOVA) y la prueba de Tukey HSD con el paquete agricolae en R (de Mendiburu, 2017), para evaluar diferencias en cobertura de copa, altura y diámetro de la vegetación en los diferentes estratos. Todos los análisis se realizaron en el programa R (R Core Team, 2019).
Uso tradicional de las plantas
Se aplicaron encuestas semiestructuradas a un grupo de personas que incluyó a actores sociales involucrados en el manejo tradicional de los recursos naturales, ancianos, personas en edad madura, jóvenes y mujeres, para conocer las especies de plantas usadas por los pobladores locales. Además, se realizaron talleres participativos para validar los usos y percepciones sobre los recursos naturales en cada uno de los esquemas de conservación. También, se realizaron caminatas en grupos de trabajo con los productores que tuvieron conocimiento sobre los parajes, con el fin de realizar una caracterización de aspectos ambientales, sociales y culturales, con la participación de los actores sociales de la comunidad, lo que permitió crear un diagrama con información de todos los aspectos mencionados.
Resultados
Se contaron 1078 individuos en el estrato arbóreo, pertenecientes a 41 especies de 14 familias; para el estrato arbustivo fueron 412 plantas pertenecientes a 49 especies de 22 familias. Las familias arbóreas con mayor representación fueron Cactaceae (11 spp), Euphorbiaceae (7 spp) y Leguminosae (11 spp). La especie más abundante fue Neobuxbaumia tetetzo (200 individuos), seguida de Bursera fagaroides, Opuntia pilifera, Myrtillocactus geometrizans, y Amphipterygium adstringens con menos registros. Las especies más abundantes en el estrato arbustivo fueron Viguiera pinnatilobata, Mimosa sp, Melochia tomentosa, Euphorbia rossiana, Hechtia podantha, con más de 25 registros (Material complementario 1).
Estructura de las unidades del paisaje
La prueba de Shapiro-Wilk indicó normalidad en las variables medidas del estrato arbóreo (cobertura de copa, W = 0.88, P = < 0.01; altura, W = 0.93, P = < 0.01; diámetro, W = 0.93, P = < 0.01) y del arbustivo (Cobertura de copa, W = 0.87, P = < 0.01; altura, W = 0.13, P = < 0.01). Se encontró una diferencia significativa entre las variables del estrato arbóreo en las diferentes unidades del paisaje: cobertura de la copa (F = 8.01, P= < 0.01), altura (F = 24.63, P = < 0.01) y diámetro (F = 28.59, P = < 0.01) y se encontró diferencia significativa en cobertura de la copa (F = 5.04, F = <0.01) y en altura (F = 5.46, P < 0.05) del estrato arbustivo de las unidades del paisaje (Tabla 1). De acuerdo con los valores del IVI altos, las unidades AGRI, TDF_Neo y TDF_C, comparten la especie N. tetetzo, mientras que las unidades CRASS, TDF_C y TDF_Min comparten las especies B. fagaroides y B. shlechtendalii. En la unidad CRASS la especie con mayor IVI fue A. adstringens, mientras que en TDF_Min, las especies con mayor IVI fueron C. columna-trajani y F. formosa. Otras especies con valores de importancia relati-vamente altos fueron: B. submolinoformis, M. geometrizans, O. pilifera, P. praecox, P. rubra y Prosopis laevigata (Fig. 2; Material complementario 2).
Parámetros de vegetación | AGRI | CRASS | TDF_C | TDF_Min | TDF_Neo |
Número de sitios | 5 | 6 | 5 | 7 | 7 |
Riqueza de árboles | 19 | 27 | 28 | 26 | 24 |
Abundancia de árboles | 208 | 171 | 177 | 211 | 311 |
Altura promedio de árboles | 3.44 ±2.4 | 3.08 ±1.4 | 3.52 ±1.9 | 3.17 ±1.7 | 4.68 ±2.6 |
Riqueza de arbustos | 12 | 22 | 23 | 17 | 29 |
Abundancia de arbustos | 42 | 83 | 72 | 111 | 104 |
Número total de especies | 27 | 45 | 45 | 39 | 44 |
Unidades del paisaje: agricultura (AGRI), matorral (CRASS), bosque seco tropical compuesto (TDF_C), bosque seco tropical dominado por Mimosa sp (TDF_Min), bosque seco tropical dominado por Neobuxbaumia sp (TDF_Neo). Para algura promedio de árboles, se presentan valores promedio y la desviación estándar.
Abundancia y composición de especies
La unidad del paisaje TDF_Neo tuvo el mayor número de registros (n = 311), siendo N. tetetzo la de mayor representación con el 34% de éstos; TDF_Min tuvo el segundo lugar con 211 registros, con B. fagaroides, Cephalocereus columna-trajani y Fouquieria forzosa como las especies más representativas (47%). La unidad TDF_C estuvo representada por tres especies del género Bursera, y en la unidad CRASS, A. adstringens y Plumeria rubra tuvieron el mayor número de registros. Finalmente, la unidad del paisaje AGRI tuvo el menor registro de especies arbóreas y arbustivas.
La composición de especies arbóreas en las diferentes unidades del paisaje fue significativamente diferente (Anosim R = 0.44, p = 0.001) (Fig. 3A). La especie más abundante en el estrato arbustivo en TDF_Min fue V. pinnatilobata con 35% de los registros; la especie con mayor número de registros en TDF_Neo y TDF_C fue Mimosa spp mientras que V. pinnatilobata y Euphorbia rossiana fueron las más representativas en la unidad CRASS, con 49% de los registros. Sin embargo, no se encontraron diferencias significativas entre las unidades del paisaje al evaluar la composición de especies arbustivas (Anosim R = 0.084, p = 0.093) (Fig. 3B).
Diversidad de especies
El valor más alto de riqueza (q0) en el estrato arbóreo fue para la unidad TDF_C con 28 especies, seguido de CRASS con 27 y TDF_Min con 26. Con base en el traslape de los intervalos de confianza, se determinó que no existen diferencias significativas en el número de especies del estrato arbóreo entre unidades. Las curvas de rarefacción con respecto a la diversidad de especies comunes indican que las unidades CRASS (q1 = 18.16), TDF_C (q1 = 16.01) y TDF_Min (14.74), fueron significativamente más diversas que TDF_Neo (10.34) y AGRI (7.16). Con relación a la diversidad de especies muy abundantes (q2) los resultados fueron similares a los de q1, esto es, valores altos en CRASS(q2 = 13.72), TDF_C (11.73) y TDF_Min (10.47) con respecto a TDF_Neo (6.14) y AGRI (3.92) (Fig. 4A).
Unidades del paisaje: Agricultura (AGRI), matorral (CRASS), bosque seco tropical compuesto (TDF_C), bosque seco tropical dominado por Mimosa sp. (TDF_Min), bosque seco tropical dominado por Neobuxbaumia sp. (TDF_Neo).
En el estrato arbustivo, los valores de diversidad q0 mostraron diferencia significativa entre TDF_Neo con 29 especies, y TDF_Min con 17 y AGRI con 12 especies. La unidad TDF_Neo fue significativamente más diversa y con mayor dominancia (q1=19.60, q2 = 14.90), que CRASS (q1 =11.26, q2= 7.0), AGRI (q1 = 8.09, q2 = 6.43) y TDF_Min (q1= 8.80, q2= 5.58), teniendo en cuenta que no hay traslape de los intervalos de confianza (Fig. 4B).
Uso tradicional de las plantas
Se registró un total de 53 especies de flora constituida por árboles, arbustos y herbáceas con uso tradicional en SGCB (Tabla 2). Esta lista incluye la sábila (Aloe sp.) que se encuentra bajo una categoría del CITES (2010), y la pata de elefante (Beucarnea gracilis) que se encuentra amenazada (A) según la norma oficial mexicana NOM-059-Semarnat-2010 (Semarnat, 2010) y es endémica de la región. Del total, 32% se usa como alimento, 22% como remedio medicinal, 8% para leña o madera, 6% para fines variados, y 3% como alimento para el ganado.
Especie | Nombre común | Usos |
Agave sp. | Maguey | Alimento (flores) |
Vachellia campechana | Cucharillo | Leña y forraje (chivos) |
Acacia pringlei | Quebracho | Leña y forraje (chivos) |
Acrocomia mexicana | Coyolito | Forraje (chivos) y Ornamental (árbol de navidad) |
Agave kerchovei | Cacalla | Alimento (flores) |
Agave sp. | Rabo de león | Alimento (flores) |
Aleurites moluccana | Chichicaxtle | Medicinal |
Aloe sp. | Sábila | Medicinal (desinflamatorio) |
Amphipterigyum adstringens | Cuachalala (Cuachalalate) | Medicinal (antibiótico) |
Arundo donax | Carrizo | Material de construcción |
Bursera morelensis | Palo rojo | Ornamental |
Bursera sp. | Aceitillo | Forraje (venado y chivos) |
Bursera sp. | Copalillo | Religioso y aromático |
Byrsonima crassifolia | Nanchi | Alimento (fruto) y bebida alcohólica |
Ceiba aesculifolia | Pochote | Alimento (fruto y semilla), leña, forraje y artesanal |
Chenopodium sp. | Pepichas | Alimento |
Chenopodium sp. | Quelites | Alimento |
Cnidoscolus tehuacanensis | Mala mujer | Medicinal (desinflamatorio) |
Cyrtocarpa procera | Chupandilla | Alimento (fruto y semilla) y forraje (ganado y especies silvestres) |
Discorea sp. | Mata gallina | Uso doméstico |
Escontria chiotilla | Jiotilla | Alimento (fruto) |
Euphorbia rossiana | Candelilla | Artesanal y forraje |
Glycyrrhiza glabra | Palo dulce | Medicinal |
Hechtia podantha | Lechuguilla | Forraje de especies silvestres |
Jatropha neopauciflora | Sangre degrado | Medicinal |
Leucaena esculenta | Guaje rojo | Alimento (vaina) y forraje (chivos) |
Lippia graveolens | Orégano | Alimento y medicinal |
Mammillaria sp. | Biznaga | Alimento y artesanal |
Mimosa sp. | Uña de gato | Medicinal, forraje (chivos) y leña |
Mitrocereus fulviceps | Cardón | Alimento (fruto y semillas) y leña |
Myrtillocactus sp. | Garambullo | Alimento, bebida alcohólica y leña |
Neobuxbaumia sp. | Tetecho | Alimento (fruto) |
Especie | Nombre común | Usos |
Opuntia pilifera | Cocoche | Alimento (fruto) |
Opuntia pubescens | Chile de perro | Alimento (fruto) |
Opuntia sp. | Nopal | Alimento (fruto y semilla) y forraje (especies silvestres) |
Pachycereus marginatus | Cardón gigante | Alimento (fruto) y leña |
Parkinsonia praecox | Mantecoso | Medicinal, pegamento y leña |
Pilosoceereus chrysacanthus | Tuna abuelito | Alimento (fruto) |
Plocosperma buxifolium | Cuerno de venado | Forraje (chivos) y leña |
Plumeria rubra | Cacaloxochilt | Ornamental |
Porophyllum macrocephalum | Papaloquelite | Alimento |
Prosopis laevigata | Mezquite | Leña y forraje (chivos) |
Quercus sp. | Chilillo | Leña |
Schinus molle | Pirul | Medicinal |
Selaginella pallescens | Siempre viva | Medicinal |
Senna sp. | Tecuahúe | Leña |
Sideroxylon palmeri | Tempezquistle | Alimento (fruto) |
Stenocereus pruinosus | Pitayo | Alimento (fruto) y leña |
Stenocereus sp. | Xoconostle | Alimento (fruto) y leña |
Turnera diffusa | Itamorreal | Medicinal |
Viguiera dentata | Chilamacate | Forraje |
Zapoteca formosa | Escobillo | Uso domestico |
Ziziphus amole | Cholulo | Uso doméstico y leña |
Discusión
En el presente estudio se registró un total de 24 familias de especies vegetales, cifra que coincide con lo observado en otras localidades de los estados Michoacán y Guerrero (Méndez-Toribio et al., 2014; Pineda-García et al., 2007) y es similar a lo registrado para la vegetación del Valle de Tehuacán (Martínez-Bernal et al., 2021). Sin embargo, es menor en comparación con otros bosques secos del estado de Oaxaca, donde se han contado entre 30 y 50 familias (Gallardo-Cruz et al., 2005; Trejo y Dirzo, 2002). Además, se encontró que las familias botánicas mejor representadas en la localidad fueron Leguminosae,
Cactacea, Euphorbiaceae y Burseraceae, tanto en número de especies como en número de individuos. Esto coincide con lo señalado en investigaciones previas de otros bosques secos tropicales del país (Bravo-Bolaños et al., 2016; Gallardo-Cruz et al., 2005; León de la Luz et al., 2012; Méndez-Toribio et al., 2014; Pineda-García et al., 2007; Sánchez-Mejía et al., 2007; Trejo y Dirzo, 2002; Williams-Linera y Lorea, 2009).
En la evaluación de las medidas de estructura de la vegetación se encontraron diferencias en el estrato arbóreo y arbustivo. Sin embargo, en cuatro unidades del paisaje no se registró intervención humana activa, por lo que es probable que estas diferencias en la estructura vegetal se deban a características ambientales (Segura et al., 2002; White y Hood, 2004). Además, los parámetros de la vegetación coinciden con lo registrado para el Valle de Tehuacán (Méndez-Toribio et al., 2014). Por otra parte, diferentes estudios han demostrado que el valor de algunos pará-metros estructurales se ven afectados por efecto humano (Beltrán-Rodríguez et al., 2018; Leirana-Alcocer et al., 2009; Velásquez et al., 2002). Los datos obtenidos en este estudio confirman que en la unidad AGRI, que se caracteriza por presentar actividad antropogénica, mostró diferencias estructurales significativas en los diferentes estratos.
En cuanto al índice de valor de importancia, los resultados de este trabajo coinciden con lo observado dentro de la RBTC, donde especies como Fouquieria formosa, Parkinsonia praecox, Plumeria rubra, Prosopis laevigata y varias del género Burcera presentaron un alto valor de importancia (Martínez-Bernal et al., 2021). También, se registró un alto valor de importancia de la especie Neobuxbaumia tetetzo, lo que resalta la importancia y la dominancia de esta especie representativa de la RBTC (Miguel-Talonia et al., 2014). Además, se ha registrado que la asociación entre especies de los géneros Neobuxbaumia, Bursera, Amphipterigyum y Mimosa, que tuvieron un alto valor de importancia en este estudio, ofrecen mejores condiciones de hábitat y fuente de alimento para fauna silvestre (Barrera-Salazar et al., 2015; Ramos-Robles et al., 2013; Vásquez et al., 2016).
Los resultados de la vegetación en las unidades del paisaje del presente estudio indican que existen diferencias en la composición de especies, lo cual podría atribuirse a la topografía accidentada de la localidad, ya que investigaciones previas han señalado que los cambios en la composición de los bosques secos están influenciados por las condiciones cambiantes del sustrato debido a la exposición de las laderas y los niveles en la pendiente del terreno, así como por la disponibilidad de agua. Estas condiciones del terreno promueven hábitats propicios para el establecimiento la distribución y abundancia de las especies (Durán et al., 2006; Segura et al., 2002; White y Hood, 2004). Además, se ha observado que diferentes perturbaciones antropogénicas también pueden afectar la composición de las especies en este tipo de vegetación (Almazán-Núñez et al., 2012; Leirana-Alcocer et al., 2009; Williams-Linera y Lorea, 2009). Sin embargo, aún se requiere una evaluación de este tipo de relaciones en la localidad.
Las unidades TDF_C y CRASS tuvieron la mayor diversidad (q0, q1, q2) de especies en ambos estratos. Mientras TDF_Min tuvo una alta diversidad en el estrato arbóreo y bajo en el arbustivo; sucedió lo contrario en TDF_Neo, lo cual puede estar asociado a la dominancia de una especie en estas unidades. Por otro lado, la unidad AGRI tuvo la menor diversidad de especies arbóreas y arbustivas, este resultado puede estar relacionado con la historia de uso de suelo ya que varios estudios en bosque secos han demostrado que la diversidad se ve afectada por la actividad humana (Leirana-Alcocer et al., 2009; Williams-Linera y Lorea, 2009). Además, la riqueza de especies de la localidad SGCB es mayor a la señalada por Martínez-Bernal et al. (2021) para el Valle de Tehuacán; esto se puede deber a que esos autores realizaron el estudio con un método diferente y en un área de muestreo de menor tamaño. Sin embargo, otros estudios realizados en bosques secos de Oaxaca (194 sp.), Nayarit (127 sp.), Guerrero (82 sp.), Morelos (79 sp.) y Michoacan (78 sp.) señalan una mayor riqueza de especies vegetales (Beltrán-Rodríguez et al., 2018; Bravo-Bolaños et al., 2016; Gallardo-Cruz et al., 2005; Méndez-Toribio et al., 2014; Pineda-García et al., 2007).
Por otro lado, se observó que existe un impacto negativo de la actividad humana sobre la vegetación, debido a que los habitantes mantienen un uso continuo y variado de la fauna y la flora, que utilizan para su beneficio debido al bajo nivel económico de la región. Sin embargo, el uso de los recursos naturales es el reflejo de la historia cultural que posee esta comunidad, semejante a otras localidades en la misma región (Casas et al., 2008; Moreno-Calles et al., 2010; Rendón-Sandoval et al., 2020; Zarazúa-Carbajal et al., 2020). Particularmente, la localidad de SGCB tiene una zonificación comunitaria pactada para diferentes usos derivados del Plan de Manejo de Recursos Naturales (Semarnat, 2013) y del Plan de Manejo de la UMA extensiva (Comisión Nacional Forestal [Conafor], 2012), por lo que regulan el manejo y aprovechamiento de los recursos a través de acuerdos y reglas. Esto ha permitido que los recursos naturales en general, y en particular la flora, se mantengan en buen estado de conservación. Lo anterior es importante, porque dentro de la RBTC se ha registrado el deterioro del bosque seco debido a diferentes presiones antrópicas como la presencia de asentamientos humanos, el desarrollo de carreteras y caminos y el cambio del uso de suelo de vegetación nativa hacia agricultura y ganadería (Carranza y Molina, 2003; Pontifes et al., 2018).
En este estudio se identificaron varios usos de la flora del bosque seco, similares a los mencionados en otros trabajos; entre ellos se incluyen: medicinal, combustible, alimento, obtención de alimento, forraje y madera (Benz et al., 1994; Velásquez et al., 2002; Zepeda Gómez et al., 2017). En la localidad de SGCB y en RBTC, se utilizan diferentes especies de vegetación, como la cactácea columnar N. tetetzo, que se utiliza como alimento y combustible (Dávila-Aranda y Lira-Saade, 2002). Además, diferentes especies del género Bursera, así como Ceiba aesculifolia, Amphipterygium adstringens y Prosopis laevigata, tienen una importancia cultural y económica, ya que se utilizan como medicamento y son empleadas para la elaboración de artesanías (Blanckaert et al., 2004; Canales Martínez et al., 2006; Godínez-Alvarez et al., 2008). Mientras tanto especies arbustivas como Vigniera pinnatilobata y Mimosa spp. se colectan con fines medicinales (Canales Martínez et al., 2006; Dávila-Aranda y Lira-Saade, 2002). Además, diversas especies del género Mimosa se emplean como fuente de alimento para ganado caprino y se ha registrado que contribuye a mejorar las condiciones de nutrientes del suelo por lo que se consideran como una buena opción para realizar actividades de restauración (Camargo-Ricalde y Dhillion, 2004).
Conclusiones
La zona de estudio presentó una diversidad vegetal de 41 especies de 14 familias en el estrato arbóreo y 49 especies de 22 familias en el estrato arbustivo. En el estrato arbóreo las familias Cactácea, Burserácea y Leguminosae presentaron una mayor abundancia y diversidad, lo cual coincide con estudios de otros bosques secos tropicales del país. Al clasificar el área en unidades del paisaje, se encontraron diferencias en los datos estructurales evaluados, la composición, dominancia y diversidad de especies vegetales entre estratos y unidades, lo que muestra un recambio de especies en la localidad. Esto sugiere que las diferencias pueden estar influenciadas por una heterogeneidad ambiental debido a las condiciones edáficas, topográficas, hídricas, microclimáticas y posible historia de usos en el pasado. En el presente estudio se reconoce la importancia del uso y manejo sostenible de los recursos naturales, ya que ayuda a preservar el conocimiento local y la diversidad de especies vegetales, y se promueve a través de la implementación de planes de manejo de SGCB y de la reserva. Por lo tanto, es esencial integrar tanto el conocimiento científico como el tradicional pues puede resultar útil para la conservación y manejo de la reserva.