Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.16 no.2 Ciudad de México abr./jun. 2012
Artículos
Near Optimal Solution for Continuous Move Transportation with Time Windows and Dock Service Constraints
Solución casi óptima para transportación de movimiento continúo con restricciones de ventana de tiempo y de servicio de andenes
J. Fabián López-Pérez1 and Carlos Cantú-Aguillén2
1 Centro de Desarrollo Empresarial y Postgrado, CEDEEM-UANL, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México fabian.lopez@e-arca.com.mx
2 Instituto Tecnológico y de Estudios Superiores de Monterrey, ITESM Campus Monterrey, Monterrey, NL, México ccantu@itesm.mx
Article received on 31/12/2010.
Accepted on 04/08/2011.
Abstract
We consider a pickup and delivery vehicle routing problem (PDP) commonly found in the real-world logistics operations. The problem includes a set of practical complications that have received little attention in the vehicle routing literature. There are multiple vehicle types available to cover a set of transportation orders with different pickup and delivery time windows. Transportation orders and vehicle types must satisfy a set of compatibility constraints. In addition, we include some dock service capacity constraints as required in real-world operations when there are a large number of vehicles to schedule. This problem requires to be attended on large scale instances: transportation orders ≥ 500, single-haul vehicles ≥ 100. Exact algorithms are not suitable for large scale instances. We propose a model to solve the problem in three stages. The first stage constructs initial solutions at the aggregated level relaxing time windows and dock service constraints of the original problem. The other two stages impose time windows and dock service constraints within a cut generation scheme. Our results are favorable in finding good quality solutions in relatively short computational time.
Keywords. Vehicle routing optimization, logistics and transportation planning, time windows, PDP-TWDS.
Resumen
Se considera un problema de vehículos dedicados a la carga y descarga de producto (PDP) el cual es comúnmente encontrado en las operaciones logísticas. El problema incluye un conjunto de complejidades prácticas encontradas en el mundo real y que han recibido relativamente poca atención en la literatura científica dedicada a los problemas de ruteo de vehículos. Existen múltiples tipos de vehículos disponibles para cubrir un conjunto de órdenes de transporte con diferentes ventanas de atención tanto en la carga como también en la descarga. Las órdenes de transporte así como los vehículos deben satisfacer ciertas restricciones de compatibilidad. Además, se incluyen algunas restricciones de capacidad de andenes de servicio en los nodos de carga y descarga. Este problema requiere ser resuelto para instancias de gran tamaño: ordenes de transporte ≥ 500, vehículos ≥ 100. Los algoritmos de solución exacta no son adecuados para este tipo de instancias. Por tanto se propone un modelo de tres etapas. La primera etapa construye las soluciones iniciales de manera agregada mediante la relajación temporal de las restricciones de ventanas de horario y andenes disponibles. Las otras dos etapas van añadiendo dichas restricciones al problema dentro de un esquema iterativo de generación de cortes. Los resultados obtenidos son favorables tanto lo que respecta a la calidad de las soluciones como en los tiempos computacionales requeridos.
Palabras clave. Optimización y ruteo de vehículos, planeación logística y transportación, ventanas de horario, PDP-TWDS.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. Ascheuer, N., Fischetti, M., & Grotschel, M. (2001). Solving the Asymmetric Travelling Salesman Problem with time windows by branch-and-cut. Mathematical Programming, Series A, 90(3), 475506. [ Links ]
2. Cook, W. & Rich, J.L. (1999). A parallel cutting-plane algorithm for the vehicle routing problem with time windows (TR99-04). Houston, TX: Rice University, Computational and Applied Mathematics. [ Links ]
3. Cordeau, J.F. (2006). A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations Research, 54(3), 573586. [ Links ]
4. Desrosiers, J., Dumas, Y., Solomon, M.M., & Sournis, F. (1995). Time constrained routing and scheduling. Handbooks in Operations Research and Management Science volume 8, Network Routing, 35139. [ Links ]
5. Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The Pickup and delivery problem with time windows. European Journal of Operational Research, 54(1), 722. [ Links ]
6. Dumas, Y., Desrosiers, J., & Solomon, M. (1995). An optimal algorithm for the traveling salesman problem with Time Windows, Operations Research, 43(2), 367371. [ Links ]
7. Lu, Q. & Dessouky, M.M. (2006). A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows. European Journal of Operational Research, 175(2), 672687. [ Links ]
8. Palmgren, M. (2001). Optimisation Methods for Log Truck Scheduling, PhD Thesis, Linköpings Universitet, Linköping, Sweden. [ Links ]
9. Parragh, S.N., Doerner, K.F., & Hartl, R.F. (2008). A survey on pickup and delivery problems. Part II: Transportation between pickup and delivery locations, Journal für Betriebswirtschaft, 58(2), 81117. [ Links ]
10. Ropke, S., Cordeau, J.F., & Laporte, G. (2006). Models and Branch-and-Cut Algorithms for Pickup and Delivery Problems with Time Windows Networks, 49(4), 258272. [ Links ]
11. Savelsbergh, M. & Sol, M. (1998). DRIVE: Dynamic routing of independent vehicles. Operations Research, 46(4), 474-490. [ Links ]
12. Solomon, M.M. (1984). On the worst-case performance of some heuristics for the vehicle routing and scheduling problem with time window constraints, Boston, Massachusetts: College of Business Administration, Northeastern University. [ Links ]
13. Tsitsiklis, J.N. (1992). Special cases of traveling salesman and repairman problems with time windows, NETWORKS, 22(3), 263282. [ Links ]