SciELO - Scientific Electronic Library Online

 
vol.13 número1Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: efectos en su estabilización y aplicacionesDeterminación de las isotermas de sorción y las propiedades termodinámicas de harina de maíz nixtamalizada índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México abr. 2014

 

Ingeniería de alimentos

 

Effect of cooking, annealing and storage on starch digestibility and physicochemical characteristics of unripe banana flour

 

Efecto del cocimiento, anillado y almacenamiento en la digestibilidad y las características fisicoquímicas de harina de plátano verde

 

J. de la Rosa-Millán, E. Agama-Acevedo, P. Osorio-Díaz* and L.A. Bello-Pérez

 

Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos. Km. 6.5 Carr. Yautepec-Jojutla, Col. San Isidro, C.P. 62731 Yautepec, Morelos, México. *Corresponding author. E-mail: posorio@ipn.mx. Tel. (+52) 735 3942020, Fax (+52) 735 3941896.

 

Received October 7, 2013.
Accepted November 5, 2013.

 

Abstract

The effect of cooking (C) unripe banana fruits at different times (5, 15 and 25 min), followed by annealing (ANN) and annealing + storage (ANN+S) were evaluated. Cooking of unripe banana fruit for longer times (15 and 25 min) decreases the RS content, but increases the SDS fraction. Granular aggregates were produced, which could be formed by partially gelatinized granules. ANN and ANN+S increased the RS content, while the SDS value did not change. The pasting behaviour of ANN and ANN+S showed low viscosity without breakdown or setback due to the restricted amylose leaching, which was higher in flours with ANN+S. The ANN and ANN+S increased the gelatinization temperatures while the annealed and stored samples showed an increase in the crystallinity level due to reorganization of the granular structure compared with native and cooking treated samples. It is possible to combine different treatments to modify the starch digestibility of unripe banana flour, due to that changes in the granular conformation were produced, which decrease its ability to swell and to gelatinize.

Keywords: annealing; starch digestibility; banana flour; resistant starch.

 

Resumen

Se evaluó, en frutos de plátano verde, el efecto de la cocción (C) a diferentes tiempos (5, 15 y 25 min) seguido de annealing (ANN), y annealing + almacenamiento (ANN+A). La cocción de los frutos durante tiempos prolongados (15 y 25 min) disminuyó el contenido de almidón resistente (AR), pero incrementaron la fracción de almidón de digestión lenta (ADL). Se produjeron agregados granulares, los cuales pueden estar formados por gránulos parcialmente gelatinizados. El ANN y ANN+A incrementaron el contenido de AR, mientras que el ADL no cambió. La viscosidad de pastas con el ANN y el ANN+A fueron bajas, sin rompimiento granular o re-asociación, debido a restricción en el hinchamiento de los gránulos y la baja lixiviación de amilosa, la cual fue mayor en las muestras tratadas con ANN+A. El ANN y el ANN+S incrementaron las temperaturas de gelatinización, así como su cristalinidad, debido a la reorganización de la estructura granular comparada con las muestras nativas y con cocción. Es posible combinar diferentes tratamientos para modificar la digestibilidad del almidón de plátano verde, debido a los cambios que se producen en la conformación granular, los cuales disminuyen su hinchamiento y gelatinización.

Palabras clave: anillado; digestibilidad del almidón; harina de plátano; almidón resistente.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

AACC (2000). Approved Methods of the American Association of Cereal Chemist (10th ed.). American Association of Cereal Chemist, St. Paul, MN, EUA.         [ Links ]

Adebowale, K.O., Afolabi, T.A., Olu-Owolabi, B.I., (2005). Hydrothermal treatments of Fingermillet (Eleusinecora cana) starch. Food Hydrocolloids 19, 974-983.         [ Links ]

Aparicio-Saguilan, A., Flores-Huicochea, E., Tovar, J., Garcia-Suarez, F., Gutierrez-Meráz, F., Bello-Pérez, L.A. (2005). Resistant starchrich powders prepared by autoclaving of native and litnerized banana starch: partial characterization. Starch/Starke 57, 405-412.         [ Links ]

Bello-Pérez, L.A., Aparicio-Saguilan, A., Méndez-Montealvo, G., Solorza-Feria, J., Flores-Huicochea, E. (2005). Isolation and partial characterization of mango (Manguifera indica L.) Starch: Morphological, physicochemical and functional studies. Plant Foods for Human Nutrition 60, 7-12.         [ Links ]

Blanshard, J.M.V. (1987). Starch granule and function: A physicochemical approach, in: Starch: Properties and Potential ed. by Galliard T, Chichester, United Kingdom, pp. 16-54.         [ Links ]

Bogracheva, T.Y., Wang, Y.L., Hedley, C.L. (2001). The effect of water content on the ordered/disordered structures in starch. Biopolymers 58, 247259.         [ Links ]

Carlos-Amaya, F., Osorio-Díaz, P., Agama-Acevedo, E., Yee-Madeira, H., Bello-Pérez, L.A. (2011). Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches. Journal of Agriculture and Food Chemistry 59, 1376-1382.         [ Links ]

Debet, M.R., Gidely, M.J. (2007). Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule "ghost" integrity. Journal of Agriculture and Food Chemistry 55, 4752-4760.         [ Links ]

Englyst, H.N., Kingman, S.M., Cummings, J.H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46, 33-50.         [ Links ]

Espinosa-Solis, V., Jane, J.L., Bello-Pérez, L.A. (2009). Physicochemical characteristics of starches from unripe fruits of mango and banana. Starch/Starke 61, 291-299.         [ Links ]

Faisant, N., Gallant, D.J., Bouchet, B., Champ, M. (1995). Banana starch breakdown in the human small intestine studied by electron microscopy. European Journal of Clinical Nutrition 49, 98-104.         [ Links ]

Goñi, I., García, D., Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research 17, 427-437.         [ Links ]

Gomes, A. M. M., Silva, C.E.M., Ricardo, N.M.P.S., Sasaki, J.M., Germani, R. (2004). Impact of annealing on the physicochemical properties of unfermented cassava starch (polvilho doce). Starch/Starke 56, 419-423.         [ Links ]

Han, J.A., BeMiller, J.N. (2007). Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers 67, 366-374.         [ Links ]

Hernández-Nava, R.G., Bello-Pérez, L.A., San Martín-Martínez, E., Hernandez-Sánchez, H., Mora-Escobedo, R. (2011). Effect of extrusion cooking on the functional properties and starch components of lentil/banana blends: Response surface analysis. Revista Mexicana de Ingeniería Química 10, 409-419.         [ Links ]

Hoover, R., Manuel, H. (1996). Effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize starches. Journal of Cereal Science 23, 153-162.         [ Links ]

Hoover R, Ratnayake, W.S. (2004). Determination of total amylase content of starch, in: Handbook of food analytical chemistry-water proteins, enzymes, lipids, and carbohydrates, ed. by Wrolstad RE, Hoboken, New Jersey, pp. 689-691.         [ Links ]

Hoover, R., Vasanthan, T. (1994). The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. Journal of Food and Biochemistry 17, 303-325.         [ Links ]

Jacobs, H., Delcour, J.A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agriculture and Food Chemistry 46, 2895-2905.         [ Links ]

Jacobs, H., Eerlingen, R.C., Clauwaert, W., Delcour, J.A. (1995). Influence of Annealing on the Pasting Properties of Starches from Varying Botanical Sources. Cereal Chemistry 72, 480-487.         [ Links ]

Jayakody, L., Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins. A review. Carbohydrate Polymers 74, 691-703.         [ Links ]

Juárez-García, E., Agama-Acevedo, E., Sáyago-Ayerdi, S.G., Rodríguez-Ambriz, S.L., Bello-Pérez, L.A. (2006). Composition, digestibility and application in breadmaking of banana flour. Plant Foods for Human Nutrition 61, 131-137.         [ Links ]

Krueger, B.R., Walker, C.E., Knutson, C.A., Inglett, G.E. (1987). Differential scanning calorimetry of raw and annealed starch isolated from normal and mutant maize genotypes. Cereal Chemistry 64, 181-190.         [ Links ]

Lan, H., Hoover, R., Jayakody, L., Liu, Q., Donner, E., Baga, M., Asare, E.K., Hucl, P., Chibbar, R.N. (2008). Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches. Food Chemistry 111, 663-675.         [ Links ]

Lineback, D.R., Rasper, V.F. (1988). Wheat Carbohydrates, in: Wheat, Chemistry and Technology ed. By Pomeranz, St. Paul, Minnesota, pp. 227-372.         [ Links ]

Ovando-Martinez, M., Sáyago-Ayerdi, S.G., Agama-Acevedo, E., Goñi, I.; Bello-Pérez, L.A. (2008). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry 113, 121-126.         [ Links ]

Radosta, S., Kettlitz, B., Schierbaum, F., Gernat, C. (1992). Studies on rye starch properties and modification. Part II. Swelling and solubility behaviour of rye starch granules. Starch/Starke 44, 8-14.         [ Links ]

Rodríguez-García, M.E. (1995). Ph. D. Thesis, CINVESTAV-IPN, México.         [ Links ]

Rodriguez-Ambríz, S.L., Islas-Hernández, J.J., Agama-Acevedo, E., Tovar, J., Bello-Pérez, L.A. (2008). Characterization of a fiberrich powder prepared by liquefaction of unripe banana flour. Food Chemistry 107, 1515-1521.         [ Links ]

SYSTAT software Inc., V 3.0. (2005). Chicago, Illinois.

Tester, R.F., Debon, S.J.J., Karkalas, J.J. (1998). Annealing of wheat starch. Journal of Cereal Science 28, 259-272.         [ Links ]

Tester, R.F., Debon, S.J.J. (2000). Annealing of starch - A review. International Journal of Biological Macromolecules 27, 1-12.         [ Links ]

Tester, R.F., Morrison, W.R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chemistry 67, 551-557.         [ Links ]

Vermeylen, R., Goderis, B., Delcour, J.A. (2006). An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers 64, 364-375.         [ Links ]

Viveros-Contreras, R., Téllez-Medina, D.I., Perea-Flores, M.J., Alamilla-Beltrán, L., Cornejo-Mazón, M., Beristain-Guevara, C.I., Azuara-Nieto, E., Gutierrez-López, G.F. (2013). Encapsulation of ascorbic acid into calcium alginate matrices through coacervation coupled to freeze-drying. Revista Mexicana de Ingeniería Química 12, 29-39.         [ Links ]

Waduge, R.N., Hoover, R., Vasanthan, T., Gao, J., Li, J. (2006). Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Research International 39, 59-77.         [ Links ]

Zhang, B., Dhital, S., Gidely, M.J. (2013). Synergistic and antagonistic effects of α-amylase and amyloglucosidase on starch digestion. Biomacromolecules 14, 1945-1954.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons