Introducción
A través de los años, el territorio mexicano ha experimentado un proceso de cambio en el uso de suelo, donde áreas forestales se han transformado en zonas agrícolas y aquellas de uso agrícola se han urbanizado. Dichos procesos de cambio han afectado el funcionamiento de los ecosistemas presentes en cuencas hidrológicas, generando un impacto negativo en los procesos hidrológicos, pues se incrementa la pérdida de suelo, así como el aumento en escurrimientos e inundaciones en zonas bajo riesgo (Miranda et al., 2009).
El suelo es un componente del ecosistema cuyas sus propiedades físicas y químicas intervienen en diversos procesos, como la infiltración, la distribución y evaporación del agua (De Roo, 2003). Por esto, su análisis coadyuva al entendimiento de tendencias espacio-temporales de los procesos de degradación y desertificación (Mas et al., 2009).
La cuenca hidrológica del río Conchos se localiza en el norte de México, en gran parte del estado de Chihuahua y en el estado de Durango. Actualmente, la actividad humana en esta cuenca causa problemas por cambios de uso de suelo, deforestación, sobreexplotación de material mineral y contaminación de los ríos, ocasionada por actividades humanas (Linares, 2004). Asimismo, esta zona se ve afectada por sequías frecuentes, que generan volúmenes de almacenamiento mínimos en presas, por lo que la superficie irrigada disminuye de manera significativa (Bates et al., 2008).
La cuenca del río Conchos constituye la fuente de agua más importante para el río Bravo por el lado mexicano; siendo parte de su volumen utilizado por los Estados Unidos, de acuerdo con el Tratado Binacional de Aguas Internacionales de 1944. Lo antes expuesto magnifica la importancia del de esta cuenca, en virtud de que los cambios en su uso se traducen en pérdidas de suelo, fertilidad y afectación en el ciclo hidrológico (Kelly, 2001).
Un problema a nivel nacional es la inconsistente información climática disponible en las estaciones distribuidas en el territorio mexicano, en este sentido, aun cuando para el presente estudio existe dicha información para la región de la cuenca del río Conchos, la consistencia de los datos es irregular, por lo que es imperante la reconstrucción de datos mediante técnicas estadísticas (Núñez-López et al., 2013; Núñez et al., 2014; León et al., 2016). Por otra parte, el acervo de información de datos climáticos disponibles en plataformas de instituciones de prestigio internacional constituye una opción para obtener datos climáticos, las cuales se fundamentan en datos observados y en modelaciones de la superficie de la tierra (Mocko, 2012; Xia et al., 2012). El modelo NLDAS-2 (North American Land Data Assimilation System v002) es utilizado para estudios de balance hídrico en cuencas de Norteamérica, incluyendo análisis de sequías y relaciones de precipitación-escurrimiento (Nan et al., 2010; Mo et al., 2011; Espinoza et al., 2016).
Una herramienta que se utiliza para evaluar los recursos naturales es el sistema de información geográfica (Trucíos et al., 2010); ya que permite determinar la ubicación y cuantificación de las áreas deforestadas, impacto en la biodiversidad y modificación de los procesos hidrológicos, entre otros aspectos (Palacio et al., 2004; Berlanga et al., 2009). Por lo tanto, se parte del supuesto de que la cuenca del río Conchos ha atravesado por cambios en uso y pérdidas de suelo, así como modificaciones en su régimen de escurrimiento superficial y que estos procesos pueden analizarse de manera histórica mediante un sistema de información geográfica bajo un esquema geoespacial de alta resolución.
El objetivo del presente estudio fue determinar el cambio de uso de suelo, el grado de erosión hídrica y volúmenes de escurrimiento superficial, mediante modelos de predicción de erosión-escurrimiento y datos asimilados del modelo NLDAS-2, a través de imágenes Landsat para los años de 1980, 2000 y 2018.
Método
Área de estudio
La cuenca del río Conchos se localiza en las coordenadas 26°05’ a 29°55’ latitud norte, y 104°20’ a 107°55’ de longitud oeste (Fig. 1), ubicada en la Región Hidrológica 24 río Bravo-Conchos, con una extensión superficial de 68,387 km2 y un gradiente altitudinal de 772 a 3282 m (INEGI, 2013). Dicha cuenca está conformada por cinco subcuencas: 1) Río Conchos-Ojinaga; 2) Río Conchos-Presa la Colina; 3) Río Conchos-Presa el Granero; 4) Río Florido; y 5) Río San Pedro (Viramontes et al., 2008).
Cambio de uso de suelo
Se generaron mapas de uso de suelo, empleando imágenes satelitales de Landsat TM de 1980, ETM+ de 2000 y Landsat OLI/TIRS de 2018 con una resolución espacial de 30 m por píxel. Estas se obtuvieron del U.S. Geological Survey (http://glovis.usgs.gov/). En virtud de que la cuenca de estudio presenta una amplia superficie, se trabajó con un mosaico conformado por nueve escenas para 1980 y 2018, y ocho escenas para el 2000.
El análisis se llevó a cabo utilizando una clasificación supervisada de la zona de estudio (Chuvieco, 2008). El análisis se generó con el software Erdas Imagine versión 2014, con el clasificador de Máxima Verisimilitud (Intergraph, 2013). Se generaron campos de muestreo para obtener las firmas espectrales para las siete clases identificadas (bosque de pino, bosque de encino, matorral, pastizal, agricultura, asentamientos humanos y cuerpos de agua). Estos campos fueron útiles para exploraciones directas en campo y para fotointerpretación del mosaico con el uso de Google Earth y su herramienta de acervo histórico de imágenes.
La validación de las clasificaciones se llevó a cabo con la herramienta de Precisión Erdas, evaluando el nivel de aceptación por píxel para cada año en 91 puntos conocidos, a través de 13 puntos por clase, obtenidos por georreferenciación previa en exploraciones a la región de la cuenca del río Conchos. Rwanga y Ndambuki, (2017) mencionan que entre 10 y 15 puntos por clase son suficientes para obtener el porcentaje de precisión de clasificación a través de puntos conocidos y predichos. Adicionalmente se obtuvo el estadístico Kappa de manera general y por clase, el cual ha sido tradicionalmente utilizado sobre otras alternativas porque se ajusta a la casualidad aleatoria (Hardin y Shumway, 1997).
A través de la herramienta Matriz de Unión del mismo software, se generó una matriz de transición de 1980 a 2000 y de 2000 a 2018, con el fin de observar el cambio de superficie por clase o la persistencia a través del tiempo. La tasa de cambio entre periodos se estimó con la ecuación propuesta por Palacio et al. (2004):
Donde: Td es la tasa de cambio de uso anual (porcentaje); S1 es el área del año inicial; S2 es el área del año final; y n es el número de años del periodo de análisis.
Erosión hídrica
Para estimar la cantidad de suelo erosionado (tm ha-1 año-1) por efectos hídricos se aplicó la Ecuación Universal de Pérdida de Suelo (EUPS) (Renard et al., 2010), de la que se obtiene el indicador que estima el promedio anual de erosión, mediante una relación lineal de varios factores expresados de la siguiente manera:
Donde: A es la tasa de erosión anual (tm ha-1 año-1); R es el factor de erosividad por la lluvia (MJ mm ha-1 h-1 año-1); K es el factor de erosionabilidad del suelo (tm ha-1 h-1); L es la longitud de la pendiente (adimensional); S es el factor del grado de la pendiente (adimensional); C es el factor de manejo del cultivo (adimensional); y P es el factor de prácticas de conservación (adimensional). Como resultado final, se obtuvieron mapas de pérdida de suelo para cada año de estudio.
El factor de erosividad R se refiere a la capacidad potencial de la lluvia para causar erosión al suelo. A partir de ecuaciones de erosividad, la República Mexicana se divide en 14 regiones, razón por la cual se optó por el modelo acorde a la zona de estudio (Montes-León et al., 2011).
Para el área de estudio, la ecuación que se utilizó para cuantificar el factor R regido por la precipitación fue la siguiente:
Donde: P es la precipitación media anual (mm).
Para el cálculo del factor R, fue necesario contar con valores de precipitación de la zona de estudio y, para tal efecto, se descargó el modelo NLDAS-2, con la finalidad de obtener información de precipitación mensual en mm con resolución espacial de 0.125° para 1980, 2000 y 2018. Los valores obtenidos se promediaron redefinidos en su escala, y fueron homologados con el modelo digital de elevación de 30 m de INEGI, a través de un sistema de información geográfica.
El factor K está determinado a partir del porcentaje de materia orgánica y la clase textural (Stewart et al., 1975). Para seleccionar su valor, los puntos de referencia fueron obtenidos de las cartas edafológicas 1:50000 (INEGI, 1978), con la finalidad de obtener la clase textural del triángulo de texturas de la USDA (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167) (USDA, 2010).
El factor LS se relaciona con la topografía y el relieve del suelo de manera conjunta; el factor L es la distancia desde el punto de origen de un escurrimiento hasta el punto donde decrece la pendiente, y se calcula con la siguiente ecuación:
Donde: L es el factor de longitud de la pendiente; λA es el área de flujo superficial; m es el factor ajustable que depende de la susceptibilidad del suelo a ser erosionado; y 22.1 es la longitud de escurrimiento estándar.
El factor S refleja el impacto a causa de la pendiente en la producción de sedimentos; se calcula mediante la expresión:
Donde: S es la pendiente en grados; 0.09 es la constante del gradiente de pendiente, el cual es ajustable y depende de la susceptibilidad del suelo a erosión. En el presente estudio se emplearon valores de m = 0.4 y n = 1.4 (Oliviera et al., 2013).
Para el factor C se establecieron valores de acuerdo con la cobertura vegetal existente, toda vez que indica la manera en que el plan de conservación afecta la tasa de erosión promedio anual y cómo la pérdida de suelo se distribuirá a través del tiempo, según las actividades de construcción, rotación de cultivos y otros esquemas de manejo (Montes-León et al., 2011). Para el citado factor se utilizó la información de las clases (bosque de pino, bosque de encino, matorral, pastizal, agricultura, asentamientos humanos y cuerpos de agua) obtenidas de la clasificación supervisada de los años de estudio, para luego asignar el coeficiente acorde a (Montes-León et al., 2011).
Según la información disponible, no es posible el conocimiento de prácticas de conservación en el suelo, ni del manejo de las actividades productivas, en consecuencia, el factor P fue la unidad (P = 1), tal como lo refiere Portuguez (2015). Para determinar umbrales de corte entre clases, se categorizó el resultado final de erosión hídrica de la siguiente manera: nula < 2; ligera 2-10; moderada 10-50; alta 50-200; y muy alta > 200 tm ha-1 año-1 para cada año, como lo establece (FAO, 2006).
Volumen de escurrimiento medio
El volumen de escurrimiento medio se generó mediante el método establecido por la norma oficial mexicana NOM-011-CNA-2000 (CNA, 2000), que se emplea para el estudio de acuíferos en cuencas hidrográficas con registros hidrométricos escasos (Silva-Hidalgo et al., 2013; Martín-Clemente et al., 2015) y se fundamenta en la siguiente expresión:
Donde: Vm es el volumen medio anual de escurrimiento (m3); P es la precipitación anual de la cuenca (m); Ce es el coeficiente de escurrimiento (adimensional); y A es el área de la cuenca (m2).
El procedimiento para la estimación de los volúmenes de escurrimiento se realizó con análisis espaciales en el territorio, mediante el análisis de mapas de precipitación y coeficientes de escurrimiento con el apoyo de un sistema de información geográfica. La precipitación se obtuvo del modelo NLDAS-2 para los años de 1980, 2000 y 2018; dicha información se analizó en formato raster para cuantificar el volumen espacial de escurrimiento con el software ArcGIS 10.3 (ESRI, 2014).
El coeficiente de escurrimiento Ce se determinó con la clasificación de uso de suelo generada y la textura correspondiente según la carta de edafología de INEGI (INEGI, 2014), donde se identificó el valor de ke, de acuerdo con el análisis de álgebra de mapas conforme la Tabla 1 (CNA, 2000).
Uso de suelo | Tipo de suelo | ||
---|---|---|---|
A | B | C | |
Barbecho, áreas desnudas | 0.26 | 0.28 | 0.30 |
Cultivos en hilera | 0.24 | 0.27 | 0.30 |
Legumbres o rotación de pradera | 0.24 | 0.27 | 0.30 |
Granos pequeños | 0.24 | 0.27 | 0.30 |
Pastizal cubierto más del 75 % | 0.14 | 0.20 | 0.28 |
Pastizal cubierto del 50 al 75 % | 0.20 | 0.24 | 0.30 |
Pastizal cubierto menos del 50 % | 0.24 | 0.28 | 0.30 |
Bosque cubierto más del 75 % | 0.07 | 0.16 | 0.24 |
Bosque cubierto del 50 al 75 % | 0.12 | 0.22 | 0.26 |
Bosque cubierto del 25 al 50 % | 0.17 | 0.26 | 0.28 |
Bosque cubierto menos del 25 % | 0.22 | 0.28 | 0.30 |
Zonas urbanas | 0.26 | 0.29 | 0.32 |
Caminos | 0.27 | 0.30 | 0.33 |
Pradera permanente | 0.18 | 0.24 | 0.30 |
Una vez que la clasificación del uso de suelo y vegetación para los años de estudio se agrupó en siete clases principales, se promedió el valor de ke de cada tipo en un valor representativo, incluyendo para la clase de “agricultura” el valor de ke de cultivos en hilera, legumbres, rotación de pradera y granos pequeños. De igual manera, los valores de ke para la clase “pastizal”. Para estimar el coeficiente de escurrimiento (Ce) se aplicaron las siguientes expresiones según el valor de ke.
Si ke < 0.15, entonces:
Si ke > 0.15, entonces:
Donde: Ce es (adimensional); ke es el factor de tipo y uso de suelo (adimensional); y P es la precipitación anual promedio histórica. El valor espacial se multiplica por 900 m2 para convertirlo a Litros/píxel y se divide entre mil para obtener a m3/píxel (Díaz-Padilla et al., 2012).
Resultados y discusión
En seguida, se muestran los mapas de distribución de las siete clases principales de uso y vegetación (área urbana, cuerpos de agua, pastizal, bosque de pino, bosque de encino, matorral y agricultura). En los años 1980, 2000 y 2018 (Fig. 2), se obtuvieron coeficientes Kappa de 0.92, 0.93 y 0.91, y precisiones de la clasificación de 93.41, 94.51 y 92.31 %, respectivamente. De acuerdo con Mas et al. (2003), estos resultados son aceptables en todos los casos, ya que el coeficiente Kappa toma valores desde -1 a 1, donde 1 es el valor de una concordancia completa entre las unidades estimadas a través del procesamiento digital de imágenes y la verdad de campo. Vargas-Sanabria y Campos-Vargas (2017), caracterizaron los posibles rangos de la precisión de clasificación en tres grupos; > 80 % fuerte; 40-80 moderada; y < 40 % como pobre, por lo tanto, en el presente análisis todos los casos responden a una precisión catalogada como fuerte.
Las tasas de cambio de uso del suelo agrícola y de aquellos con vegetación (bosque de pino, bosque de encino, matorral y pastizal), presentaron fluctuaciones entre años. Según la tasa de cambio, de 1980 a 2000, el suelo agrícola se incrementó (0.95 %), así como el bosque de pino (0.21 %) y el matorral (0.33 %); en contraste, se detectó pérdida en pastizal (-0.51 %). En el período 2000 a 2018 se observó una tendencia fluctuante, en virtud de que el suelo agrícola se incrementó (1.25 %), lo que era de esperarse en zonas de producción agrícola (Castelán et al., 2007). A su vez, el bosque de encino también presentó incremento (11.44 %), y también el suelo con matorral (1.49 %).
Por otro lado, se reflejó una disminución en superficie en el bosque de pino (-3.95 %) y comunidades de pastizal (-3.81 %), situación que podría atribuirse a cambios en el uso del suelo, a efectos del sobrepastoreo y a la influencia de procesos asociados a calentamiento global (Becerra-López et al., 2017).
La tendencia observada en el lapso de 39 años, al parecer, obedece al impacto antropogénico en zonas con potencial productivo y al aumento en la densidad poblacional, que, para satisfacer necesidades básicas como vivienda y alimento, recurren al incremento en la frontera agrícola y urbanización de áreas naturales (Berlanga et al., 2009; Trucíos et al., 2013).
Las matrices de transición de cambio en el uso de suelo para los periodos de 1980 a 2000, y de 2000 a 2018, se presentan en las Tablas 2 y 3. Los valores en diagonal (negritas), representan la persistencia de cada clase a través del tiempo, la cual es el atributo con mayor superficie expresada en km2, lo cual coincide con Miranda et al. (2009) y Figueroa-Jáuregui et al. (2011). Considerando el lapso y los cambios ocurridos de 1980 a 2000, resalta la conversión de la clase pino a pastizal, lo que está asociado a prácticas antropogénicas, ya que los productores cuentan con ganado, el cual manejan en pastoreo (Orona et al., 2010), siendo la razón de la transición hacia esta clase. La reconversión antes mencionada es un comportamiento atribuido al aprovechamiento de los bosques de pino en el estado de Chihuahua (Escárpita, 2002) y documentado en el estudio previo en una cuenca vecina en el estado de Durango (Trucios-Caciano et al., 2009). La transición de encino a pino de 2000 a 2018 se incrementó considerablemente en comparación al observado de 1980 a 2000, situación atribuida al trabajo de reforestación y regeneración en los bosques de pino, así como al aprovechamiento que se ha realizado al encino (García et al., 2019). El incremento de pastizal se atribuye al incremento en la densidad de población en el estado de Chihuahua, ya que de acuerdo con el INEGI (2000, 2015), se pasó de 3.1 millones a 3.5 millones de habitantes desde el año 2000 al 2015, lo que trae consigo incrementos en las zonas de agostadero para el sector pecuario.
Nuevo uso del suelo 1980-2000 | ||||||||
---|---|---|---|---|---|---|---|---|
Urbano | Agua | Pino | Encino | Agricultura | Pastizal | Matorral | Total (2000) |
|
Urbano | 113.14 | 0.03 | 1.20 | 0.31 | 13.51 | 21.07 | 44.22 | 193.51 |
Agua | 0.05 | 124.44 | 3.90 | 0.25 | 1.19 | 7.03 | 8.78 | 145.66 |
Pino | 0.25 | 3.42 | 7641.47 | 903.23 | 1.83 | 1008.01 | 1211.59 | 10769.81 |
Encino | 0.02 | 1.92 | 663.98 | 212.42 | 3.58 | 78.62 | 87.21 | 1047.77 |
Agricultura | 14.19 | 8.25 | 44.76 | 8.99 | 1520.23 | 581.71 | 447.97 | 2626.13 |
Pastizal | 11.85 | 4.48 | 1720.67 | 281.23 | 344.10 | 10977.2 | 8596.19 | 21935.73 |
Matorral | 23.43 | 42.20 | 250.63 | 108.20 | 288.75 | 11649.2 | 17908.6 | 30271.03 |
Total (1980) | 162.95 | 184.76 | 10326.62 | 1514.66 | 2173.21 | 24322.85 | 28304.59 |
Nuevo uso del suelo 2000-2018 | ||||||||
---|---|---|---|---|---|---|---|---|
Urbano | Encino | Agricultura | Agua | Pino | Matorral | Pastizal | Total (2018) |
|
Urbano | 140.70 | 0.15 | 35.51 | 0.75 | 6.62 | 100.92 | 44.15 | 328.79 |
Encino | 0.49 | 158.28 | 25.28 | 1.56 | 4947.05 | 1279.10 | 953.79 | 7365.54 |
Agricultura | 7.37 | 11.23 | 1399.23 | 2.08 | 238.24 | 627.91 | 1085.55 | 3371.60 |
Agua | 0.05 | 0.32 | 3.24 | 134.27 | 3.03 | 91.94 | 42.84 | 275.68 |
Pino | 0.24 | 826.78 | 22.84 | 1.11 | 3830.72 | 479.27 | 43.17 | 5204.14 |
Matorral | 23.59 | 16.14 | 952.71 | 5.03 | 571.14 | 24349.90 | 13627.40 | 39545.90 |
Pastizal | 21.09 | 34.89 | 187.33 | 0.87 | 1173.02 | 3342.01 | 6138.92 | 10898.12 |
Total (2000) | 193.52 | 1047.78 | 2626.14 | 145.66 | 10769.82 | 30271.04 | 21935.81 |
El análisis de erosión hídrica revela las zonas susceptibles a dicho disturbio, en las Figs. 3a, 3b y 3c. Una comparación entre mapas permite diferenciar las zonas más afectadas por erosión hídrica, donde se aprecia que el cambio en el uso favorece la pérdida de suelo, al dejarlos más frágiles y por ende susceptibles a una mayor degradación. Los porcentajes de afectación por categorías según FAO (2006), se muestran en la Tabla 4. El factor de erosividad por la lluvia (factor R), presentó gran importancia en la pérdida de suelo, ya que pasó de 57.90 para 1980 hasta 26.42 MJ mm ha-1 h-1 para 2018, situación debida a la tendencia climática local, con episodios de sequías para el 2018 (SMN, 2018). En este factor se tiene la seguridad de que los datos de lluvia corresponden a una modelación procedente de datos asimilados, los cuales consideran información observada y reconstruida en la región de la cuenca del río Conchos, situación que maximiza el resultado al considerar la lluvia acumulada en toda la superficie de estudio (Wanielista et al., 1997), así como el considerar el efecto de la topografía que incluyen los datos asimilados (Xia et al., 2012). El factor de erosividad por tipo de suelo (factor K), presentó un rango de 0.1 hasta 0.5, con una marcada susceptibilidad de los suelos en la parte media y baja de la cuenca, donde se ubican las unidades de tipo litosol, suelos que son considerada altamente susceptibles a erosión ya que son someros y pedregosos (Loredo et al., 2007), siendo la parte media de la cuenca la más afectada con pendientes mayores al 30 %. Cabe señalar que el factor K se realizó con la capa de tipo de suelo de INEGI, la cual fue elaborada en 1978, por lo cual, este factor puede estar sobreestimado y posiblemente se requiera evaluar contemplando el factor topográfico o la humedad del suelo, tal como es usado en el modelo RUSLE (Römkens et al., 1996). El factor L y S, en conjunto, presentan valores hasta 1150, donde se localizan pendientes de entre 20 y 30 % (pendientes moderadas); de acuerdo con Hickey (2000), para un mejor ajuste deberá identificarse el punto en el que la pendiente decrece hasta que ocurre la sedimentación o el escurrimiento entra a una red de drenaje, situación que se consideró al trabajar con una alta resolución espacial en el presente estudio, ya que permitió estimar con mayor precisión las pendientes cóncavas. Los valores de los factores C y P, hacen presencia de las condiciones de uso y estado de conservación puntual del suelo; Mati et al. (2000), mencionan que la resolución espacial presenta un papel importante en el desarrollo del factor C, así como la calidad del insumo para la clasificación del uso de suelo, ya que una agregación de pixeles en una imagen satelital puede perder información respecto a la reflectancia de un objeto (Eiumnoh, 2000). El factor P, es un indicador de las áreas a establecer actividades de conservación, donde los factores RKLSP presenten valores de erosión considerable (Wishmeier, 1976; Flores et al., 2003).
Grado de afectación |
1980 | 2000 | 2018 |
---|---|---|---|
Nulo | 86.49 | 97.27 | 90.83 |
Ligero | 12.03 | 2.62 | 6.68 |
Moderado | 1.39 | 0.07 | 2.37 |
Alto | 0.04 | 0.01 | 0.09 |
Muy Alto | 0.02 | 0.008 | 0.01 |
Aun cuando en la cuenca de estudio predomina una precipitación media anual de 419 mm, se observan valores de hasta 700 mm en el rango de elevación de 2500 a 3283 msnm en la parte alta de cuenca (CONABIO, 2001). Las zonas de altas tasas de precipitación se ubican en la región de la Sierra Madre Occidental, en territorio con una creciente deforestación de bosques (Escárpita, 2002), situación que favorece mayor pérdida de suelo a consecuencia de los escurrimientos; de igual manera, la topografía ejerce un papel medular en dicha afectación. Diversos estudios señalan que el grado de pendiente y longitud hacen más susceptible el suelo a procesos erosivos (Montes-León et al., 2011). En este contexto, zonas con pendientes pronunciadas presentan problemas de erosión debido al arrastre de suelo provocado por lluvias intensas, aunado a la falta de estrato vegetativo, haciendo evidente el limitado o nulo potencial para uso agrícola (Pando et al., 2003).
Las graves consecuencias del cambio en el uso de suelo y el grado de erosión hídrica son recurrentes en la citada cuenca (Arriaga et al., 2000); unidad hidrogeológica que reviste suma importancia socioeconómica, repercutiendo directa e indirectamente en la calidad de vida de 1.3 millones de chihuahuenses (Rocha, 2005). El INECC (2007) indica que el principal problema radica en el aprovechamiento forestal desmedido en la cuenca alta, haciéndola más susceptible a procesos de erosión, lo que, aunado a la incidencia de incendios forestales intencionales, contaminación y sobreexplotación de los acuíferos, favorece la pérdida de biodiversidad y alteración del régimen hidrológico. Por consecuencia, se presenta un incremento en el volumen de escurrimiento, lo que provoca una modificación en el funcionamiento del ecosistema (Choi, 2007; Juárez-Méndez et al., 2009; Valdz-Zavala et al., 2019).
Al considerar que los volúmenes de escurrimiento son influenciados por el tipo y uso de suelo, se infiere que, en zonas con altas densidades de arbolado como el bosque de pino, se produce un escurrimiento bajo. Al respecto, Linares (2004), indicó que la afectación se ha modificado a consecuencia de la elevada tasa de deforestación que se detecta en la cuenca, lo que cambió los volúmenes de escurrimiento. Los volúmenes de escurrimiento en la cuenca del río Conchos se ha modificado con el tiempo (Tabla 5), siendo 2018 el año con mayor volumen de escurrimiento (743.08 millones de m3), duplicando el volumen que se tuvo en 1980.
Año | -----------------------Escurrimiento (millones de m3)----------------- | ||
---|---|---|---|
Máximo | Medio | Mínimo | |
1980 | 348.38 | 177.04 | 5.71 |
2000 | 137.36 | 73.23 | 9.11 |
2018 | 743.08 | 379.17 | 15.27 |
El incremento en escurrimientos para 2018, podría estar relacionado con la disminución de cobertura vegetal en la parte alta. Para 2018 la masa forestal se redujo un 11 % (Mustafa et al., 2005; Figueroa-Jáuregui et al., 2011). Así como la variabilidad en la precipitación a lo largo del periodo de estudio en la parte alta; con una disminución de 55.3 % de 1980 a 2000; sin embargo, en el período 2001-2018 se registró un incremento en la precipitación acumulada de 217.8 %, incrementando en consecuencia el escurrimiento superficial. No obstante, al analizar el hidrograma de los escurrimientos (Fig. 4) a la entrada de la presa La Boquilla, que se encuentra en la cuenca de estudio y la precipitación en la cuenca alta, sugiere incertidumbre debida a la variabilidad hidrológica, toda vez que grandes precipitaciones no necesariamente generan elevados volúmenes de escurrimiento. Estudios de carácter hídrico en la cuenca alta del río Nazas en Durango han demostrado alteraciones en los procesos hidrológicos, donde menores coeficientes de escurrimiento se presentan en zonas sin alteración de la vegetación, en contraste con aquellas donde se presenta deforestación, situación que modula los volúmenes de escurrimiento y afecta la calidad y disponibilidad del agua para diversos uso en la parte baja de la cuenca (Descroix et al., 2004). Al considerar lo anterior, en consecuencia, se infiere que en la cuenca del río Conchos, incrementos de los volúmenes de escurrimiento se producirán cuando se conjuguen la influencia de la precipitación y los efectos de cambio en el uso de suelo.
Conclusiones
La determinación de la fluctuación espacio-temporal de los cambios en la superficie de las principales clases de uso de terreno, y de eventos relacionados con ellos como pérdida de suelo y tasas de escurrimiento superficial, es de suma relevancia para conocer el estado histórico y actual que permita implementar estrategias que mitiguen aquellos procesos que requieran acciones inmediatas. En el presente estudio, se observó que las fluctuaciones en el uso del suelo de la cuenca del río Conchos, de carácter binacional, impactó en la tasa de erosión hídrica y en los volúmenes de escurrimiento para los años 1980, 2000 y 2018.
La tendencia del uso del suelo en la cuenca de estudio refleja un aumento paulatino en el área urbana; en consecuencia, se da un incremento en la demanda de alimentos. Por otro lado, se presenta una disminución en la superficie de pastizales, que está ligada a efectos antrópicos y naturales. Asimismo, el aprovechamiento forestal intensivo, impacta de manera directa en la calidad natural de la cuenca, disminuye la biodiversidad y afecta los procesos hidrológicos.
En términos de erosión hídrica, con el uso de datos asimilados, se estima a la escala estudiada una pérdida de suelo, en 1980, de 1.45 tm ha-1 año-1, incrementándose en 38 años a 2.47 tm ha-1 año-1. Lo anterior sugiere que los cambios en el uso del suelo afectan su fragilidad, causando severos daños en la biodiversidad y en la provisión de servicios ecosistémicos.
Los volúmenes de escurrimiento son un indicador del uso histórico y actual del suelo, toda vez que, si el volumen escurrido es alto, ello es indicativo de una interacción entre las precipitaciones elevadas y decrementos en la vegetación. En este estudio, para 2018 se determinaron escurrimientos hasta de 743.08 millones de m3, lo cual es favorecido por un decremento en la superficie de bosque de pino en la parte alta de la cuenca, que, al disminuir su cobertura, afecta la infiltración e incrementa el escurrimiento, favoreciendo pérdidas de suelo por arrastre, daños a viviendas y disminución en la calidad de agua, entre otros efectos negativos colaterales.