SciELO - Scientific Electronic Library Online

 
vol.15 número1Plasticidad fenotípica del cafeto en un gradiente altitudinal de la región Frailesca de ChiapasImpactos del cambio climático en la producción de maíz en México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.15 no.1 Texcoco ene./feb. 2024  Epub 25-Abr-2024

https://doi.org/10.29312/remexca.v15i1.3317 

Artículo

Modelación hidráulica de tres aforadores para mínima sedimentación

Juan Gabriel Brigido-Morales1 

Mauricio Carrillo-García1  § 

Jorge Víctor Prado-Hernández1  2 

Jorge Flores-Velázquez3 

1Posgrado de Ingeniería Agrícola y Uso Integral del Agua-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. (jgabriel.brigido@gmail.com).

2Departamento de Suelos-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. (jpradoh@chapingo.mx).

3Postgrado en Hidrociencias, Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5. Montecillo, Texcoco, Estado de México, México. CP. 56230. (jorgelv@colpos.mx).


Resumen

La sostenibilidad del uso del agua en la agricultura es muy importante, y para lograrlo se requiere de una gestión adecuada de los recursos hídricos superficiales, que en cuencas pequeñas depende de una buena medición de los datos de caudales. Este trabajo analiza el desempeño hidráulico de tres aforadores modificados de garganta larga propuestos con un canal supercrítico de pendiente de 10%, utilizando el software WinFlume® v.1.06 para un flujo máximo de 50 L s-1, para agua limpia y en condiciones en las que la sección transversal de la entrada fue modificada por sedimentos. Se realizaron simulaciones hidráulicas para secciones transversales triangulares, rectangulares y trapeciales en la garganta y el canal supercrítico, empleando el software Iber® v.2.5.2, para comparar el patrón de la curva de aforo de WinFlume® con los resultados de Iber®, la diferencia entre ambas curvas de aforo fue de un error máximo de 3% en las tres áreas transversales. Para la simulación hidráulica en el área de sección transversal modificada supercrítica para agua de flujo limpio y agua de flujo con sedimentos, se tomaron datos situados a la mitad del largo total del canal supercrítico. Las variaciones de la profundidad del flujo suponiendo sedimentación fueron insignificantes, y se encontró que el perfil del agua en el canal supercrítico no se vio afectado, por lo que puede usarse como indicador. Además, se observó que la mejor área de sección transversal para el canal fue la rectangular con un máximo de 0.9997 R2 para la curva de caudal (Q-h).

Palabras clave: escurrimientos naturales; flujo con sedimentos; medición de agua; simulación hidráulica

Abstract

The sustainability of water use in agriculture is very important, and to achieve this, proper management of surface water resources is required, which, in small basins, depends on good measurement of flow rate data. This work analyzes the hydraulic performance of three proposed modified long-throated flumes with a 10% slope supercritical channel by using the WinFlume® v.1.06 software for a maximum flow of 50 L s-1, for clean water and in conditions in which the cross section of the inlet was modified by sediments. Hydraulic simulations were performed for triangular, rectangular, and trapezoidal cross sections in the throat and the supercritical channel by using the Iber® v.2.5.2 software to compare the pattern of the WinFlume® gauging curve with the results of Iber®; the difference between both gauging curves was a maximum error of 3% in the three cross-sectional areas. For hydraulic simulation in the supercritical modified cross-sectional area for clean flow water and sediment flow water, data located at half the total length of the supercritical channel were taken. Variations in flow depth assuming sedimentation were negligible, and it was found that the water profile in the supercritical channel was not affected, so it can be used as an indicator. In addition, it was observed that the best cross-sectional area for the channel was the rectangular one with a maximum of 0.9997 R2 for the flow rate curve (Q-h).

Keywords: hydraulic simulation; natural runoff; sediment flow; water measurement

Introducción

México es un país de gran extensión territorial (1 959 millones de km2), que carece de la capacidad para el monitoreo de sus recursos hídricos, pues solamente cuenta con 815 estaciones hidrométricas operando (CONAGUA, 2019), localizadas en los principales ríos y sitios estratégicos para el desarrollo del país. Por lo que es urgente encontrar alternativas para mejorar el conocimiento sobre la cantidad, calidad y temporalidad del agua que se dispone en el país.

Considerando que, en países en vías de desarrollo como es el caso de México, aproximadamente 76% del agua disponible se utiliza para riego (CONAGUA, 2019), su monitoreo cobra mayor relevancia, sobre todo para la gestión sustentable. Puesto que, como señalan De Fraiture et al. (2010) en relación con el sector agrícola, algunas intervenciones mal concebidas o implementadas han provocado altos costos sociales y ambientales, como la asignación inequitativa del agua e impactos adversos en los ecosistemas.

Ante la necesidad de cuantificar el agua, cobra relevancia el uso de estructuras de aforo que permitan conocer con fiabilidad los volúmenes disponibles. En la actualidad existe una gran variedad de aforadores, donde los más usados son los vertedores, los que pueden ser de cresta ancha o de cresta afilada (WMO, 2010) además, su sección de medición puede ser rectangular, triangular o semicircular (Ibrahim, 2015; Haghshenas y Imanian et al., 2021; Vatankhah, 2021). Otras estructuras ampliamente utilizadas son los aforadores de garganta larga, que se construyen para una gran variedad de formas y generalmente son muy precisos cuando se operan en condiciones de flujo no sumergido (Clemmens et al., 2001).

En todos los casos, las estructuras funcionan bien con flujo de agua limpia; sin embargo, en los escurrimientos superficiales naturales existe arrastre de sedimentos (Prado et al., 2017) y un problema frecuente es la acumulación de estos en el lugar donde se mide el nivel del agua, hasta el punto de que las mediciones pierden validez (Castro-Orgaz y Mateos, 2014).

Ante esta situación Carrillo (1999) sugirió como posible solución para prevenir los errores que ocasiona la sedimentación, la adición de una rápida a un aforador de garganta larga y encontrar un sitio con una adecuada correlación entre la profundidad de flujo y el caudal circulante, esta alternativa podría ser viable, pues se ha encontrado que velocidades mayores a 0.25 m s-1 son suficientes para promover el arrastre de sedimentos y por consiguiente prevenir la sedimentación (Ackers et al., 2001; Blokker et al., 2011).

Por lo tanto, en este trabajo se presentó un avance inicial que consideró el análisis hidráulico mediante simulaciones numéricas de tres geometrías diferentes para aforadores de garganta larga, a las cuales se añadió una rápida después de la garganta con una pendiente de 10% y se modificó la elevación del fondo de la estructura.

Materiales y métodos

Diseño de las estructuras de aforo

Con el software WinFlume® v.1.06 se diseñaron tres aforadores de garganta larga, seleccionando geometrías diferentes para la sección de control (garganta): rectangular, trapecial y triangular. En todos los casos se propuso un rango de operación entre 10 y 50 L s-1 y material con rugosidad absoluta ks de 0.00006 m, además se obtuvo la tabla de aforo de caudales de cada estructura, medidos con incrementos de profundidad de flujo de 1 cm (17 caudales). A cada estructura diseñada se añadió una rápida y para estudiar los efectos de la acumulación de sedimentos en las estructuras aforadoras, se generaron dos escenarios.

Escenario 1: geometría del aforador diseñado

En el Cuadro 1, se muestran las dimensiones de las estructuras diseñadas, incluyendo la rápida propuesta para su estudio. En la sección de convergencia solo se indica la longitud, pues su anchura, profundidad y taludes, coinciden aguas arriba con el canal de entrada y aguas abajo con la sección de control (Figura 1).

Cuadro 1. Dimensiones de las estructuras de aforo diseñadas. 

Aforador rectangular Aforador trapecial Aforador triangular
Canal de entrada (sección I) Longitud (m) 0.5 0.7 0.5
Ancho de base (m) 0.4 0.25 0.24
Profundidad (m) 0.4 0.32 0.44
Taludes (m) 0:1 0.5:1 0.5:1
Convergencia (sección II) Longitud (m) 0.3 0.2 0.44
Garganta o sección de control (sección III)) Elev. sobre canal de entrada (m) 0.05 0.05 0.1
Longitud (m) 0.35 0.2 0.44
Ancho de base (m) 0.25 0.15 -
Profundidad (m) 0.35 0.27 0.34
taludes (m) 0:1 0.5:1 0.8:1
Rápida (sección IV) Longitud horizontal (m) 0.5 0.5 0.5
Pendiente (%) 10 10 10

Figura 1. Vista isométrica de los aforadores diseñados: a) aforador rectangular; b) aforador trapecial; y c) aforador triangular. 

Escenario 2: escenario 1 + modificación a la entrada

Para probar efectos de sedimentación sobre el desarrollo del flujo en la rápida, se modificó la elevación del fondo del canal de entrada y sección de convergencia de cada aforador hasta alcanzar la elevación de la sección de control, generando estructuras con nuevas dimensiones de anchura y profundidad (Cuadro 2 y Figura 2).

Cuadro 2. Dimensiones de las estructuras de aforo diseñadas para probar el efecto de la acumulación de sedimentos a la entrada de la estructura. 

Aforador rectangular Aforador trapecial Aforador triangular
Canal de entrada (sección I) Longitud (m) 0.5 0.7 0.5
Ancho de base (m) 0.4 0.3 0.34
Profundidad (m) 0.35 0.27 0.34
Taludes (m) 0:1 0.5:1 0.5:1
Convergencia (sección II) Longitud (m) 0.3 0.2 0.44
Garganta o sección de control (sección III) Longitud (m) 0.35 0.2 0.44
Ancho de base (m) 0.25 0.15 -
Profundidad (m) 0.35 0.27 0.34
taludes (m) 0:1 0.5:1 0.8:1
Rápida (sección IV) Longitud horizontal (m) 0.5 0.5 0.5
Pendiente (%) 10 10 10

Figura 2. Vista isométrica de los aforadores diseñados, con modificaciones en la sección de entrada y convergencia: a) aforador rectangular; b) aforador trapecial; y c) aforador triangular. 

Determinación de los valores de rugosidad (n) para las estructuras de aforo propuestas

A partir de los datos de la tabla de aforos, se calculó un valor de coeficiente de rugosidad de Manning para los resultados de cada gasto obtenido, considerando las características hidráulicas de la entrada de la estructura (área hidráulica, perímetro mojado, diámetro hidráulico), rugosidad relativa y número de Reynolds, utilizando para ello una ecuación derivada de las ecuaciones de Manning y Darcy-Weisbach (ecuación 1) y la ecuación de Colebrook (ecuación 2);

n=18gRh16f AUTONUMLGL \* Arabic \e.1f= -2log10k/D3.7+2.51Ref

2).

Donde: n es el coeficiente de rugosidad de Manning (adim.); g es la es la aceleración de la gravedad (m∙s-2);Rh es el radio hidráulico (m);f es el factor de fricción de Darcy (adim.); k es la rugosidad absoluta (m); D es el diámetro hidráulico (m); y Re es el número de Reynolds (adim). Luego se calculó un valor promedio para los coeficientes de Manning, obteniendo un valor de 0.0121 para el aforador rectangular, 0.0123 para el aforador trapecial y 0.0133 para el aforador triangular.

Simulación numérica del flujo de agua en los aforadores

La simulación del flujo de agua en las estructuras de aforo se llevó a cabo empleando el programa Iber® v.2.5.2, el cual resuelve las ecuaciones bidimensionales de Saint Venant, incorporando los efectos de la turbulencia rozamiento superficial por viento mediante las ecuaciones 3, 4 y 5 (Bladé et al., 2014):

ht+hUxx+hUyy=0

3).

hthUxxhUyy  thUx+xhUx2+gh22+yhUxUy=-ghZbx+τs,xρ-τb,xρ+xvthUxx+yvthUxy

4).

thUy+yhUy2+gh22+xhUxUy=-ghZby+τs,yρ-τb,yρ+xvthUyx+yvthUyy

5).

Donde:h es la profundidad (m);Ux y Uy son las velocidades horizontales promediadas en profundidad en sentido principal y transversal al flujo (m s-1); g es la aceleración de la gravedad (m s-2); p es la densidad del agua; Zb es la cota del fondo; Ƭs es la fricción en la superficie libre debida al rozamiento producido por el viento; es la fricción debida al rozamiento del fondo; y vt es la viscosidad turbulenta.

Se configuraron los modelos geométricos para los escenarios 1 y 2, definiendo los coeficientes de rugosidad de Manning para las paredes según lo obtenido: 0.0121 para el aforador rectangular, 0.0123 para el trapecial y 0.0133 para el aforador triangular, excepto la parte inferior de la sección de entrada y convergencia de los aforadores propuestos del escenario 2, en cuyo caso se usó un coeficiente de 0.023, considerando las características del material depositado (Chow, 1988).

En todos los casos se realizó una discretización numérica basada en un mallado estructurado que consistió en elementos de 0.5 cm × 1 cm, colocando el mayor lado a lo largo de la estructura (predominancia del flujo). Las condiciones de frontera impuestas fueron de caudal constante en régimen subcrítico a la entrada de los aforadores y flujo en régimen crítico/supercrítico a la salida.

Se utilizó el modelo de turbulencia k-ε de Rastogi y Rodi puesto que es de los más recurrentes para flujos turbulentos poco profundos y con buenos resultados obtenidos mediante experimentación (Cea et al., 2007; Bladé et al., 2014). La simulación para el caso de cada aforador se llevó a cabo en régimen permanente para cada caudal, con el objetivo de obtener la mejor precisión de las tablas de aforos de las estructuras diseñadas (escenarios 1 y 2); se realizaron un total de 132 simulaciones.

Determinación de profundidad de flujo y procesamiento de resultados

Se determinó la profundidad de flujo en la sección de entrada, según los requerimientos especificados para cada diseño (Clemmens et al., 2001), los sitios de determinación se situaron a 0.3 m, 0.5 m y 0.32 m aguas arriba del inicio de la convergencia, en los aforadores rectangular, trapecial y triangular, respectivamente. El sitio seleccionado en las rápidas se localizó en todos los casos a la mitad de su longitud. Además, en cada sitio, se realizaron cinco lecturas en sentido transversal al flujo y se obtuvo un valor promedio.

Evaluación del desempeño de las simulaciones numéricas

Para evaluar el desempeño de la simulación numérica realizada en Iber® respecto del flujo a la entrada de los aforadores, se midieron los valores de profundidad de flujo para compararse con respecto a los obtenidos con WinFlume®, se usaron tres indicadores estadísticos: índice de dispersión (SI), error porcentual medio absoluto (MAPE) y la raíz del error cuadrático medio (RMSE), expresados matemáticamente en las ecuaciones 6, 7 y 8 (Yousif et al., 2019).

SI=i=1Nφi-calci-sim2Nφi-calc¯×100

6).

MAPE=100Ni=1Nφi-calci-simϕi-calc

7).

RMSE=i=1Nφi-calci-sim2N

8).

Donde: φi-calc es el valor de profundidad de flujo (cm) obtenido en el diseño con WinFlume; φi-sim es el i-ésimo valor obtenido para la profundidad de flujo (cm) en la simulación hidráulica con Iber; N es el número de datos analizados; y φi-calc es la media de los valores de profundidad de flujo (cm) obtenidos con WinFlume.

Obtención de relaciones funcionales caudal-profundidad de flujo (Q-h) en la entrada y rápida de los aforadores

Con los datos de la tabla de aforos obtenida con WinFlume y de las mediciones realizadas en la rápida, se graficaron las curvas Q-h de cada aforador (ambos escenarios) y los datos se ajustaron a una ecuación característica de vertedores, que suele expresarse de la forma (Saul, 1997): Q= k·hn 9). donde Q es el caudal (L s-1); h es la profundidad del flujo (cm); y k y n son constantes (adim). Además, se calculó el coeficiente de determinación (R2), que representa el porcentaje de variabilidad en la variable dependiente; es decir, la varianza con respecto a la media (Chicco et al., 2021).

Determinación de la variación del flujo en la rápida para los escenarios 1 y 2

Para verificar la confiabilidad de las mediciones realizadas en la rápida, a pesar de las modificaciones realizadas en la entrada de las estructuras, utilizando los mismos indicadores mostrados en las ecuaciones 6, 7 y 8 se evaluó la variación existente entre los datos medidos en las rápidas de las estructuras propuestas en el escenario 1 y los datos medidos en las rápidas de las estructuras incluidas en el escenario 2.

Resultados y discusión

Relación entre caudales y profundidad de flujo para los aforadores diseñados

Partiendo del diseño original de las estructuras de aforo, con los datos de las tablas de aforo obtenidos de cada estructura en la Figura 3 se muestra el comportamiento de la profundidad del agua, en la sección de la entrada de los aforadores, correspondientes a los caudales circulantes.

Figura 3. Relación entre caudales y profundidad a la entrada. 

Comportamiento del flujo obtenido de la simulación numérica

Respecto de las simulaciones hidráulicas realizadas con Iber® en la Figura 4, se ilustran los resultados obtenidos, particularmente se muestran los resultados para profundidad de flujo en el aforador rectangular, aunque en este caso se muestra la profundidad total, mientras que el valor reportado en WinFlume® está referenciado al fondo de la garganta; es decir, al resultado se le deben restar 5 cm.

Figura 4. Comportamiento del flujo en el aforador rectangular correspondiente al escenario 1, para un caudal de 25.7666 L s-1

Al procesar la información, se obtuvo que los valores de la profundidad de flujo en la entrada de las estructuras fueron ligeramente mayores con respecto a los obtenidos con WinFlume®; sin embargo, la diferencia era constante para todo el rango de caudales, los resultados se pueden observar en el Cuadro 3.

Cuadro 3 Valores estimados de la profundidad de flujo obtenidos con Iber®

Aforador rectangular Aforador trapecial Aforador triangular
Q (L s-1) H (cm) Q (L s-1) H (cm) Q (L s-1) H (cm)
9.7656 8.18
11.7155 9.21 8.4277 9.18 8.6664 15.2
13.7855 10.24 10.1158 10.2 10.2186 16.2
15.9693 11.27 11.9512 11.21 11.9295 17.21
18.2624 12.31 13.9359 12.26 13.8051 18.22
20.6637 13.35 16.0718 13.26 15.8513 19.22
23.1666 14.39 18.3591 14.32 18.0739 20.24
25.7666 15.44 20.8038 15.31 20.4759 21.24
28.4577 16.48 23.4064 16.37 23.0585 22.26
31.2422 17.52 26.1695 17.38 25.817 23.27
34.1196 18.57 29.0955 18.39 28.7926 24.31
37.0778 19.62 32.1602 19.41 31.9728 25.34
40.0957 20.67 35.4009 20.49 35.3634 26.29
43.1855 21.7 38.8187 21.53 38.9625 27.3
46.3736 22.74 42.4099 22.51 42.7911 28.3
49.6385 23.8 46.1753 23.48 46.8476 29.35
52.9784 24.84 50.1202 24.57 51.1377 30.33

Q= caudal; h= profundidad del flujo.

Desempeño de las simulaciones numéricas

Utilizando los resultados obtenidos con las simulaciones, se obtuvieron los indicadores estadísticos que se muestran en el Cuadro 4, donde se puedo observar que en todos los casos el error obtenido fue menor al 3%, incluso en el caso del aforador triangular el error calculado no superó 2%. Dichos resultados sustentan la confiabilidad de los resultados obtenidos mediante la simulación numérica, puesto que, si se considera que los autores de WinFlume® indican que el error sustentado analítica y experimentalmente en los aforadores diseñados es de aproximadamente 2%, se puede inferir que en el peor de los escenarios se tendría un error de ±5% con respecto al valor verdadero.

Cuadro 4 Indicadores estadísticos para los valores de h del prototipo y modelo. 

Aforador rectangular Aforador trapecial Aforador triangular
SI (%) 2.92 2.06 1.03
MAPE (%) 2.94 2.19 1.2
RMSE (cm) 0.468 0.329 0.232

Curvas caudal-profundidad de flujo (Q-h) en la entrada y rápida de los aforadores

Utilizando los datos de las tablas de aforo obtenidas con WinFlume® para las estructuras incluidas en el escenario 1, además de los resultados obtenidos con las simulaciones numéricas, se obtuvieron ecuaciones ajustadas entre el caudal y profundidad de flujo en la entrada de la sección (Cuadro 5). Se observa una variación en las ecuaciones ajustadas; sin embargo, en todos los casos se obtuvieron valores muy cercanos a 1 para los coeficientes de determinación (R2).

Cuadro 5 Ecuaciones ajustadas y coeficiente de determinación a la entrada de los aforadores. 

Software Aforador Ecuación ajustada Coeficiente de determinación
WinFlume® Aforador rectangular Q= 0.4016∙h1.5365 R2= 0.999996
Aforador trapecial Q= 0.1394∙h1.8498 R2= 0.999828
Aforador triangular Q= 0.0083∙h2.564 R2= 0.999996
Iber® Aforador rectangular Q= 0.4043∙h1.518 R2= 0.999997
Aforador trapecial Q= 0.1361∙h1.844 R2= 0.99976
Aforador triangular Q= 0.0079∙h2.57 R2= 0.999973

Q= caudal (L s-1); h= profundidad del flujo (cm).

Es posible notar de acuerdo con el valor de R2 que el mejor ajuste para datos de WinFlume® se logra con el aforador triangular y el rectangular. No obstante, los datos obtenidos con Iber® indican un mejor ajuste con el aforador rectangular, seguido del triangular y en último lugar el trapecial.

En la Figura 5 se muestran las relaciones Q-h obtenidas en las rápidas de los aforadores al analizar los resultados de las simulaciones numéricas, donde el cruce de las curvas del canal trapecial y rectangular se explica por la mayor tasa de aumento del área hidráulica de una sección trapecial con respecto a una rectangular al aumentar su profundidad, además del comportamiento del régimen supercrítico que genera ondas transversales resultando la formación del ‘salto oblicuo’.

Figura 5. Ajuste de curvas Q-h para para las mediciones del sitio seleccionado en la rápida de los tres aforadores incluidos en el escenario 1. 

Los modelos de ecuaciones ajustados a los datos medidos en las rápidas de las estructuras pertenecientes al escenario 1, junto con su coeficiente de determinación (R2) se recogen en el Cuadro 6. Donde a pesar de tener un buen ajuste en los tres aforadores, puede notarse nuevamente que el mejor ajuste se obtiene con el aforador de sección rectangular con un R2 más cercano a 1.

Cuadro 6 Ecuaciones ajustadas y coeficiente de determinación calculado a partir de las mediciones en el sitio seleccionado de la rápida de las estructuras de aforo. 

Ecuación ajustada Coeficiente de determinación
Aforador rectangular Q= 2.041 h1.272 R2= 0.999995
Aforador trapecial Q= 0.921∙h1.5034 R2= 0.999414
Aforador triangular Q= 0.0513∙h2.2877 R2= 0.999925

Variación del flujo en la rápida para los escenarios 1 y 2

Respecto a la variación entre los resultados de las simulaciones numéricas en las rápidas de los aforadores, para los escenarios analizados; se encontró que una reducción del área hidráulica a la entrada del aforador no tiene un efecto relevante en el comportamiento del flujo desarrollado en la rápida, pues como se puede ver en el Cuadro 7, en ninguno de los casos se alcanzó un error superior al 1%.

Cuadro 7 Indicadores estadísticos calculados para los valores de profundidad del flujo determinados con Iber® en los aforadores del escenario 2 con respecto a los valores del escenario 1. 

Aforador rectangular Aforador trapecial Aforador triangular
SI (%) 0.2 0.5 0.13
MAPE (%) 0.16 0.39 0.12
RMSE (cm) 0.016 0.04 0.019

Esto se debe a que a pesar de que la estructura se modifica en el fondo por la acumulación de sedimentos, aún mantiene el diseño de un aforador con constricciones laterales, los cuales según Bos y Wijbenga (1997) ya se han utilizado con anterioridad para la medición de caudales en canales con transporte de sedimentos, además recientemente en el trabajo de Aali y Vatankhah (2023) se reportó un error promedio cercano a 2.2% en la medición de caudales utilizando canales simples con una contracción trapezoidal.

En este trabajo también se pudo constatar que en los dos escenarios el número de Froude en el canal de entrada siempre se mantuvo por debajo de 0.4, el cual es un requisito para lograr superficies uniformes de la superficie del agua. Al mantenerse las condiciones aguas arriba de la garganta, también se mantienen las condiciones de flujo desarrolladas en la garganta y rápida.

Con base en lo expuesto por el Cuadro 7, los resultados indican que el desempeño de la estructura rectangular y triangular es similar; sin embargo, es necesario considerar otros aspectos, como los observados por los siguientes investigadores, con el fin de seleccionar el tipo de geometría adecuada para uso en condiciones de cauces naturales.

La investigación de Agazadeh y Mohammadi (2013) sobre las condiciones de la velocidad de movimiento incipiente de partículas de sedimento en canales de sección triangular, demostró que la sección del canal tiene un impacto significativo, pues debido a que las paredes del canal están muy juntas en el fondo el flujo es muy débil, por lo que resulta necesaria una mayor velocidad para alcanzar el movimiento incipiente del sedimento.

Por otra parte, Aksoy et al. (2017) llevaron a cabo un trabajo experimental analizando el flujo de agua con sedimentos en canales de sección trapecial, rectangular, circular, en forma de U y de fondo en V, donde encontraron que, para una misma pendiente, los canales de sección rectangular proporcionan la velocidad de deposición incipiente de sedimentos más baja, mientras que el canal con fondo en V presenta la velocidad de deposición incipiente de sedimentos más alta.

En este mismo sentido, Unal (2018) reportó que los canales rectangulares tienen una mayor eficiencia en el transporte de sedimentos, pues las partículas de sedimentos comienzan a depositarse bajo un esfuerzo cortante menor en el canal rectangular en comparación con los canales no rectangulares. Por lo tanto, tomando en cuenta los resultados de estas investigaciones, junto con los resultados encontrados en este trabajo se observó la conveniencia del uso de secciones rectangulares.

Dado que el problema en todos los aforadores es la sedimentación, la base de esta investigación fue la propuesta de medición de los caudales en la rápida añadida, donde los resultados obtenidos muestran el desarrollo de velocidades en un rango de 0.5 y 2 m s-1, al ser mayores que las indicadas por Ackers et al. (2001); Blokker et al. (2011) para promover el arrastre de sedimentos, se previene el problema de acumulación de sedimentación y por consiguiente se asegura una lectura constante de los caudales circulantes.

Conclusiones

A pesar de que se observaron variaciones en las profundidades de flujo determinadas en Iber con respecto a las obtenidas originalmente con WinFlume®, los resultados mostraron un error máximo del ±5%. Derivado del análisis entre los escenarios 1 y 2, se encontró que la acumulación de sedimentos a la entrada de la estructura tiene un mínimo efecto en el desarrollo de las condiciones de flujo, pues en ninguno de los caudales simulados se encontró un número de Froude superior a 0.4, esta condición permite que la estructura siga funcionando correctamente y en consecuencia que las variaciones en la profundidad del flujo en la rápida sean menores al 1%.

Basados en los resultados de las simulaciones y las revisiones de otras investigaciones experimentales que han mostrado que la presencia de sedimentos de fondo en el flujo constituye un motivo para considerar con más detalle la selección del tipo de aforador para instalar, se concluyó que un aforador con geometría rectangular resulta más conveniente para su construcción y las condiciones de flujo en cauces naturales.

Se recomienda realizar una investigación más detallada para lograr el mejor desempeño de la estructura seleccionada, proponiendo otras pendientes para las rápidas y también otros sitios de medición en las mismas; todo ello encaminado a determinar las características de una estructura que pudiera ofrecer la mejor alternativa para su implementación en campo, lo que incluye su estudio experimental.

Bibliografía

Aali, F. and Vatankhah, A. R. 2023. Experimental study of simple flumes with trapezoidal contraction. Flow measurement and instrumentation. 90:102328. Doi: 10.1016/j.flowmeasinst.2023.102328. [ Links ]

Ackers, J.; Brandt, M. and Powell, J. 2001. Hydraulic characterization of deposits and review of sediment modelling. UK water industry research, London, UK. 01/DW/03/18. [ Links ]

Agazadeh, B. and Mohammadi, M. 2013. Experimental study of incipient motion of non-cohesive sediment in a rigid triangular channel. In: 16th International conference on transport & sedimentation of solid particles. Rostock University, Rostock, Germany. 1-8 pp. [ Links ]

Aksoy, H.; Safari, M. J. S.; Unal, N. E. and Mohammadi, M. 2017. Velocity based analysis of sediment incipient deposition in rigid boundary open channels. Water Science and Technology. 76(9):2535-2543. [ Links ]

Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J. y Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(1):1-10. [ Links ]

Blokker, E. J. M.; Vreeburg, J. H. G.; Schaap, P. G. and van Dijk, J. C. 2011. The self-cleaning velocity in practice. Water Distribution Systems Analysis. 187-199 pp. [ Links ]

Bos, M. G. and Wijbenga, J. H. A. 1997. Passage of sediment through flumes and over weirs. Irrigation and Drainage Systems. 11:29-39. Doi: 10.1023/A:1005752711183. [ Links ]

Carrillo, G. M. 1999. Sediment-resistant flume for hydrologic measurements. Tesis doctoral. Universidad de Arizona. Repositorio Institucional Universidad de Arizona. 15-104 pp. [ Links ]

Castro-Orgaz, O. and Mateos, L. 2014. Water discharge measurement in agricultural catchments using critical depth flumes affected by sediment deposition. Journal of Irrigation Drainage Engineering. 140(3):04013018. Doi: 10.1061/(asce)ir.1943-4774.0000672 [ Links ]

Cea, L.; Puertas, J. and Vázquez-Cendón, M. E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Archives of Computational Methods in Engineering. 14(3):303-341. Doi: 10.1007/s11831-007-9009-3. [ Links ]

Chicco, D.; Warrens, M. J. and Jurman, G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science. 7:e623. [ Links ]

Chow, Ven Te. 1988. Open channel hydraulics, McGraw-Hill book company. New York USA. 680 p. [ Links ]

Clemmens, A. J.; Wahl, T. L.; Bos, M. G. and Reploge, J. A. 2001. Water measurement with Flumes and Weirs. International Institute for Land reclamation and improvement (ILRI). Publication 58. Wageningen, The Netherlands. 382 p. [ Links ]

Comisión Nacional del Agua. 2019. Atlas de agua en México. Ed. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Cd. Méx. [ Links ]

De Fraiture, C.; Molden, D. and Wichelns, D. 2010. Investing in water for food, ecosystems, and livelihoods: an overview of the comprehensive assessment of water management in agriculture. Agricultural Water Management. 97(4):495-501. Doi:10.1016/j.agwat.2009.08.015 [ Links ]

Haghshenas, V. and Vatankhah, A. R. 2021. Discharge equation of semicircular side weirs: an experimental study. Flow measurement and instrumentation . 81:102041. [ Links ]

Ibrahim, M. M. 2015. Bed profile downstream compound sharp crested V notch weir. Alexandria Engineering Journal. 54(3):607-613. [ Links ]

Imanian, H.; Mohammadian, A. and Hoshyar, P. 2021. Experimental and numerical study of flow over a broad crested weir under different hydraulic head ratios. Flow measurement and instrumentation . 80:102004. [ Links ]

Prado-Hernández J. V.; Rivera-Ruíz, P.; León-Mojarro, B.; Carrillo-García, M. y Martínez-Ruíz, A. 2017. Calibración de los modelos de pérdidas de suelo USLE y MUSLE en una cuenca forestal de México: caso El Malacate. Agrociencia. 51(3):265-284. [ Links ]

Saul, A. J. 1997. Combined sewer overflows. In: Sewers: rehabilitation and new construction repair and renovation. Ed. 1 Butterworth Heinemann. Oxford, UK. 283-317 pp. [ Links ]

Unal, N. E. 2018. Shear stress-based analysis of sediment incipient deposition in rigid boundary open channels. Water. 10(10):1399. [ Links ]

Yousif, A. A.; Sulaiman, S. O.; Diop, L.; Ehteram, M.; Shahid, S.; Ansari, N. and Yaseen, Z. M. 2019. Open channel sluice gate scouring parameters prediction: different scenarios of dimensional and non-dimensional input parameters. Water . 11(2):353. [ Links ]

Recibido: 01 de Octubre de 2023; Aprobado: 01 de Enero de 2024

§Autor para correspondencia: mauricio@correo.chapingo.mx.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons