SciELO - Scientific Electronic Library Online

 
vol.14 número1Skeletal indicators of locomotor adaptations in shrewsHabitat use, richness, and abundance of native mice in the highlands of the Talamanca mountain range, Costa Rica índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Therya

versión On-line ISSN 2007-3364

Therya vol.14 no.1 La Paz ene. 2023  Epub 31-Jul-2023

https://doi.org/10.12933/therya-23-2214 

Special contributions

Ecological niche differentiation among Aztec fruit-eating bat subspecies (Chiroptera: Phyllostomidae) in Mesoamerica

Iván Hernández-Chávez1  2 

Lázaro Guevara3 

Joaquín Arroyo-Cabrales4 

Livia León-Paniagua2  * 

1 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Av. Ciudad Universitaria 3000, CP. 04360, Coyoacán. Ciudad de México, México. E-mail: ivanhc@ciencias.unam.mx (IH-C).

2 Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México. Av. Ciudad Universitaria 3000, CP. 04360, Coyoacán. Ciudad de México, México. E-mail: llp@ciencias.unam.mx (LL-P).

3 Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. Circuito Zona Deportiva s/n, Ciudad Universitaria, CP. 04510, Coyoacán. Ciudad de México, México. E-mail: llg@ib.unam.mx (LG).

4 Laboratorio de Arqueozoolog ía , Subdirección de Laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia. Moneda 16, Col. Centro, CP. 06060, Cuauhtémoc. Ciudad de México, México. E-mail: arromatu5@yahoo.com.mx (JA-C).


Abstract

Artibeus aztecus is a Mesoamerican montane bat with three currently recognized, allopatric subspecies. No study has evaluated the phylogenetic status of the subspecies. However, through an analysis of its ecological niche and its geographic distribution, here we analyze whether there is differentiation of the climatic requirements for each subspecies, assessing whether niche evolution is a potential factor in subspecies differentiation. We assayed ecological niche models for each subspecies, analyzed the response curves for the most important climatic variables of each model, and generated the potential distribution model for each subspecies. We assayed a background similarity test between the subspecies to determine how similar their niches were. We found differences in climatic requirements for the three allopatric subspecies and the most important variables and their response curves. Potential distribution models concur with Mesoamerican highlands and highlight the lowlands of the isthmus of Tehuantepec and the Nicaraguan depression as possible geographic barriers. Differences found between ecological niches for each subspecies contrast with previous findings for the species and other phyllostomid bats. Niche conservatism may have caused geographic isolation in the past, and differences in environmental requirements may have appeared later. Molecular and morphological analyses are necessary to clarify the taxonomic status of these populations and the evolutionary processes involved in their diversification.

Keywords: Geographic barriers; Mesoamerica; neotropical bats; niche divergence; ecological speciation

Resumen

Artibeus aztecus es un murciélago montano mesoamericano, cuyas tres poblaciones alopátricas son reconocidas como subespecies. Sin embargo, no hay estudios filogenéticos que permitan aclarar su situación taxonómica, por lo que, a través del análisis de su nicho ecológico y distribución geográfica, se analizó si existe diferenciación en los requerimientos climáticos para cada subespecie, evaluando si la evolución del nicho es un factor potencial en la diferenciación de las subespecies. Se llevaron a cabo modelos de nicho ecológico para cada subespecie, se analizaron las curvas de respuesta de las variables más importantes y, se generó el modelo de distribución potencial para cada subespecie. Adicionalmente se realizaron pruebas de similitud de background entre las tres subespecies para determinar qué tan similares son sus nichos. Se encontraron diferencias en los requerimientos climáticos entre las tres subespecies, así como en las variables más importantes y sus curvas de respuesta. Los modelos de distribución potencial coinciden con las tierras altas de Mesoamérica y destacan las zonas bajas del istmo de Tehuantepec y la depresión de Nicaragua como posibles barreras geográficas. Las diferencias encontradas en los nichos ecológicos de las subespecies contrastan con los hallazgos previos para la especie y otros murciélagos filostómidos. Conservadurismo de nicho ecológico pudo provocar aislamiento geográfico en el pasado y las diferencias en los requerimientos climáticos pudieron aparecer después. Son necesarios análisis moleculares y morfológicos que permitan conocer de manera más amplia los patrones evolutivos involucrados en la diversificación de la especie.

Introduction

Artibeus aztecus is a medium-sized phyllostomid bat that inhabits the highlands of Mesoamerica. The three allopatric populations of this taxon are recognized as subspecies (Davis 1969): Artibeus aztecus aztecus, found from Sinaloa and Nuevo León to Oaxaca in México; Artibeus aztecus minor, located from Chiapas, México, to Honduras; and Artibeus aztecus major, found from Costa Rica and Panama.

The subspecies A. a. aztecus was typical in evergreen forests at relatively high elevations in the mountains bordering the Mexican Plateau, as low as 1000 m in cloud forest and as high as 2,400 m in the pine-fir forest, it has been recorded in pine-oak forest, coniferous forest, Abies forest, cloud montane forest, agricultural areas (López-González and García-Mendoza 2006; Segura-Trujillo and Navarro-Pérez 2010; Briones-Salas et al. 2019; Cerón-Hernández et al. 2022); In Veracruz (México) it is considered vulnerable because it inhabits forest fragments but can use riparian vegetation as corridors to cross grasslands (Cerón-Hernández et al. 2022). In the case of A. a. minor, it has been reported in coniferous forest, montane cloud forest, grasslands, areas with secondary vegetation, agricultural landscapes and in human settlements (Davis 1969; Kraker-Castañeda et al. 2017; Lorenzo et al. 2017; Medina-Van Berkum et al. 2020). Artibeus a. major is the only subspecies whose distributional pattern was not associated with conifers, but with “cloud forest” atmospheric conditions (Davis 1969); there are records of the subspecies in tropical premontane rainforest and tropical lower montane rainforest (Zamora-Mejías and Rodríguez-Herrera 2017; Pineda-Lizano and Chaverri 2022).

Artibeus aztecus is a frugivorous bat. Fruit-eating bats in Artibeus are considered important in seed dispersal (Saldaña-Vázquez 2019), which is essential for forest regeneration and maintenance of plant genetic diversity and composition (Wang and Smith 2022), thereby being crucial to forest conservation and management (Jordano et al. 2011). In central México A. aztecus eats wild figs (Ficus sp.), capuli cherries (Prunus serotine), cypress (Cupressus sp), and Mexican hawthorn (Crataegus Mexicana; Solari et al. 2019).

Previously, Davis (1969) treated the three populations as subspecies, having observed only subtle differences in color and some cranial, mandibular, forearm, and phalanx measurements. He also assumed no interbreeding among the three populations. Artibeus a. major is the largest of the three subspecies, and A. a. minor is the smallest, while A. a. aztecus is the least dark subspecies. Later, a study that tested the degree to which the potential distribution of one taxon predicted the geographic distribution of its putative sister taxon and vice versa, using the chi-squared statistic to evaluate statistical significance. The study found that the subspecies A. a. aztecus and A. a. minor have similar ecological niches (Peterson et al. 1999). These conclusions were confirmed with the reanalysis of the data using chi-square test statistic and background similairity test using both I and D metrics (Warren et al. 2008).

As in other groups of vertebrates (Fitzpatrick and Turelli 2006; Zink 2012; Heinicke et al. 2017), including bats (Roberts 2006; Datzmann et al. 2010; Monteiro and Nogueira 2011; Morales-Martínez et al. 2021), geographic isolation is likely driving the diversification process between the central and northern subspecies of the A. aztecus distribution. Long-term geographic isolation of populations could lead to the accumulation of genetic or phenotypic differences through neutral or selective processes (Baker and Bradley 2006). If distinct ecological conditions are present in each region, they may stimulate the divergence process (Turelli et al. 2001; Kozak and Wiens 2006).

The study of the environmental requirements of species and the possible differences between them can be a useful tool in evaluating the taxonomic status of populations (Buermann et al. 2008; Lentz et al. 2008; Tocchio et al. 2015; Guevara and Sánchez-Cordero 2018). Ecological niche-based modeling (ENM) is a tool that permits the exploration of geographic and ecological processes by relating species occurrence records with environmental data (Kozak and Wiens 2006; Phillips et al. 2006; Kozak et al. 2008). ENM may help make taxonomic decisions by making niche comparisons between populations or species or by identifying regions that could isolate them (Rissler and Apodaca 2007; Martínez-Gordillo et al. 2010; Arribas et al. 2013; Aguilar 2019; Hending 2021).

Here we evaluate the similarities -or differences- between the climatic requirements of the three subspecies of A. aztecus, using background similarity tests (as in Warren et al. 2008; but we used a higher number of specimens for each subspecies) and comparing its potential geographic distributions to better understand the ecological resemblance of the subspecies and clarify the taxonomic status of this bat across Mesoamerica. Based on previous studies, we hypothesize that niche conservatism has caused the isolation of A. aztecus populations and possible morphological divergence.

Materials and methods

Occurrence data. We collected georeferenced occurrence records for the three populations from the Mammal Collection of the Zoology Museum, UNAM (Facultad de Ciencias - Universidad Nacional Autónoma de México, México City, México, MZFC-M), the Mammal Collection of CIDIIR Durango (Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango, Instituto Politécnico Nacional, Durango City, México, CRD), and from the databases of VertNet (downloaded on July 27, 2020) and of the Global Biodiversity Information Facility (GBIF, http://www.gbif.org; downloaded on April 30, 2021: https://doi.org/10.15468/dl.e2b69x), using the name “Artibeus aztecus” recorded from 1960 to the present (2020-2021). To reduce sampling bias, we spatially thinned our original data set using the spThin package (Aiello-Lammens et al. 2015) in R 4.0.3. While retaining the greatest number of localities possible, thinning ensured that the distance between all pairs of localities exceeded 10 km (Boria et al. 2014). Records for the final database are shown in Supplementary material 1. We follow Baker et al. (2016) and Cirranello et al. (2016) in using Artibeus rather than Dermanura (contraBurgin et al. 2018).

Environmental data. We used 15 bioclimatic variables (Supplementary material 2; Hijmans et al. 2005, www.worldclim.org) at ~5 km resolution, excluding the four layers that combine precipitation and temperature information into the same layer since they show odd spatial anomalies between neighboring pixels (Escobar et al. 2014), apparently as a consequence of their linked temperature and precipitation variables (Campbell et al. 2015). We extracted the climatic data using ArcMap (ArcGIS Desktop: Release 10.4).

We used a Pearson correlation test to detect and exclude highly correlated environmental variables. The analysis was performed in R with the library ntbox (Osorio-Olvera et al. 2020), which filters the variables that summarize the environmental information of the presences (occurrences) data according to a correlation threshold; this algorithm suggests which variables to use for the modeling part. The threshold selected for this analysis was r < 0.7.

Calibration area. The dispersal capacity of the species, M of the BAM diagram in distribution theory (Soberón and Nakamura 2009), is useful for choosing the calibration area in niche modeling analysis (Barve et al. 2011). Since the dispersal ability of A. aztecus is unknown, we used ArcMap (ArcGIS Desktop: Release 10.4) to generate the calibration area for each subspecies, with a buffer distance of 1° (~111 km) around occurrences, as a similar distance has been observed in movements of A. lituratus, another species of the genus (Arnone et al. 2016).

Ecological niche modelling. We developed niche models for each of the three subspecies of A. aztecus using the maximum entropy method implemented in Maxent version 3.4.4 (Phillips et al. 2006). To select the models with the optimal settings for each subspecies, we built various models with all the possible combinations of linear, quadratic, and product features, with different percentages of training locations (25 % and 50 %) and different regularization multipliers (from 0.0 to 2.0 in 0.5 steps), analyzing 70 models for each subspecies. We used 10,000 randomly selected pixels within each generated calibration area as the background sample. All the models were generated and evaluated with the library kuenm (Cobos et al. 2019) in R.

We selected the final models based on two evaluation metrics. First, we used partial receiver-operating characteristic (ROC) approaches, as to avoid at least some of the failings of classical ROC approaches (Peterson et al. 2008). We used an acceptable omission error threshold of E = 5 and 100 replicate 50% bootstrap resamplings to establish whether the ROC AUC (area under the curve) ratio was above 1.0. Secondly, we used the 5 % training omission rate (OR05), which shows the proportion of test localities with suitability values lower than those excluding the 5 % of training locations with the lowest predicted suitability. Omission rates above the 10% expectation typically indicate model overfitting (Muscarella et al. 2014). The final models were bootstrapped 10 times and we analyzed the data obtained from the average model.

We analyzed and compared the response curves of the three variables with the highest percentage of contribution and permutation importance for each model. The potential distribution of each subspecies were projected to the Mesoamerican region and to generate binary maps, we chose the 10th percentile training presence threshold (Peterson et al. 2007, 2011). We performed these analyses in ArcMap (ArcGIS Desktop: Release 10.4).

Background similarity test. We used background similarity tests to assess niche differentiation between A. aztecus subspecies (Warren et al. 2010). This test determines whether ENMs are more similar than expected by chance, based on the geographical regions where each subspecies reside. This type of analysis is particularly important when allopatric populations are being compared because some differences in niches may inevitably follow from the fact that distinct geographic regions rarely encompass identical distributions of environmental variables (Warren et al. 2010). We developed 100 replicate comparisons of each population’s known occurrences against the background (points drawn from the accessible area) of the other (sample size matching those available for the “background” population). The background similarity tests were performed with the ENMTools package version 1.0.4 (Warren et al. 2021) in R.

We assess similarity in pairwise combinations of subspecies using two similarity measures: Schoener’s D (1968 and Hellinger’s I. These similarity measures are obtained by comparing the estimates of normalized probability calculated for each grid cell of a study area using a Maxent-generated ENM. Both indexes range from 0, when spaces predicted environmental tolerances do not overlap, to 1, when all grid cells are estimated to be equally suitable for both species. Niche similarity is inferred when the observed value falls above the distribution of expected values. In contrast, the difference is inferred when the observed value falls to the left of the distribution (Warren et al. 2010).

Results

We analyzed 151 confirmed A. aztecus occurrences: 104 for A. a. aztecus, 38 for A. a. minor, and 9 for A. a. major (Figure 1). Ten of the original climate variables were highly correlated with other variables and were excluded from analysis. For the final analysis, we used: annual mean temperature (bio01), mean diurnal range (bio02), isothermality (bio03), annual precipitation (bio12), and precipitation of the driest month (bio14). Final models with the optimal settings for each subspecies were as follow: A. a. aztecus: linear, quadratic, and product features, and regularization multiplier of 1 (Mean AUC ratio: 1.195, OR05: 0.096); A. a. minor: linear and quadratic features, and regularization multiplier of 0.5 (Mean AUC ratio: 1.426, OR05: 0.0); and A. a. major: linear, quadratic and product features and regularization multiplier of 1.5 (Mean AUC ratio: 1.687, OR05: 0.5).

Figure 1 Ocurrence records for the three subspecies of Artibeus aztecus: Artibeus aztecus aztecus (yellow), Artibeus aztecus minor (blue) and Artibeus aztecus major (light red). 

The most important variable for the model of all the subspecies was the annual mean temperature, while the annual precipitation was the only variable that was not placed between the the three most important models for any model. The second and third variable for each model were: mean diurnal range and precipitation of the driest month for A. a. aztecus, precipitation of the driest month and isothermality for A. a. minor, and isothermality and mean diurnal range for A. a. major (Table 1).

Table 1 Percentage of contribution and permutation importance of climatic variables used in MaxEnt model for each subspecies of Artibeus aztecus

Subspecies Variable Percentage of contribution Permutation importance
A. a. aztecus Annual mean temperature 55.5 52
  Mean diurnal range 36.8 37.7
  Precipitation of driest month 2.7 3.3
  Isothermality 2.7 0.8
  Annual precipitation 2.3 6.2
A. a. minor Annual mean temperature 75.8 46.3
  Precipitation of driest month 10.9 13.3
  Isothermality 9.1 25
  Annual precipitation 2.9 13.7
  Mean diurnal range 1.3 1.6
A. a. major Annual mean temperature 91.4 87.5
  Isothermality 5.7 5
  Mean diurnal range 2.1 6.8
  Annual precipitation 0.8 0.7
  Precipitation of driest month 0 0

Analyzing the response curves for the annual mean temperature, the only important variable in common for the three subspecies, the highest values (> 0.6) of suitability for A. a. aztecus are between 14 °C and 20 °C, while for A. a. minor they are bewteen 14 and 20 °C, and for A. a. major at less at 18 °C (Supplementary material 3). For the mean diurnal range of temperature, in A. a. aztecus the highest suitability is between 8 °C and 14.5 °C, while in A. a. major it is above 6.5 °C (Supplementary material 3a, c). For the isothermality, the highest suitability for A. a. minor was above 70, while for A. a. major it was above 76 (Supplementary material 3b, c). For the precipitation of the driest month, the highest suitability for A. a. aztecus was found at values over 30 mm and for A. a. minor at values between 20 mm and 100 mm (Supplementary material 3a, b).

All potential distribution models showed close correspondence to known distributions of the three populations, showing an association with the highlands of México and Central America (Figure 2). We found relatively wide distributions for the three subspecies, so each model predicted potential distribution areas corresponding with the distribution of the other subspecies. For the three models, the montane regions were separated by less-suitable lowland areas (≤ 500 m), representing potential barriers to the dispersal of each subspecies (e. g., the Isthmus of Tehuantepec and the Nicaraguan Depression).

Pairwise comparisons indicated that A. a. aztecus and A. a. major have the lowest niche overlap (D = 0.246, I = 0.485) and A. a. aztecus and A. a. minor have the highest niche similarity (D = 0.405, I = 0.731). Observed Schoener’s D and Hellinger’s I values were significantly low compared to the null distribution in all cases (Figure 3). Comparisons involving A. a. minor showed D and I values closer to those from the left tail of the null distributions, but significantly different than expected (Figure 3a, c). In sum, background similarity tests indicated that the ecological niche models of the three subspecies were more different than expected by chance (Table 2).

Figure 2 Maxent predicted potential distribution for (a) Artibeus a. aztecus, (b) A. a. minor, and (c) A. a. major.  

Discussion

Potential distributions and geographical barriers. The niche models and potential distribution maps seem to support the findings of the habitat preference of the Aztec fruit-eating bat populations reported previously. Mesoamerican highlands, where the models indicate the potential distribution for each subspecies, include a complex assemblage of montane ecosystems containing high biodiversity and endemism (Parra-Olea et al. 2012; Bryson et al. 2018; Blair et al. 2019). Less-suitable areas, such as the Isthmus of Tehuantepec and the Nicaraguan Depression, may act as current geographic barriers to dispersal, limiting contact between the populations, as proposed previously for the subspecies A. a. aztecus and A. a. minor (Davis 1969; Peterson et al. 1999).

Figure 3 Niche overlap values for Schoener’s D and Hellinger’s I compared to a null distribution: (a) Artibeus a. aztecus (yellow) vs. A. a. minor (blue), (b) A. a. aztecus vs. A. A. major (red), (c) A. a. minor vs. A. a. major.  

Isthmus of Tehuantepec has been proposed as a biogeographic barrier associated with allopatric speciation in a broad range of taxa (Sullivan et al. 2000; León-Paniagua et al. 2007; Castoe et al. 2009; Daza et al. 2010; Rodríguez-Gómez et al. 2013, 2021) and, climatically, has been considered a barrier for dispersal of oak species, and by separating tropical ecosystems from those with more substantial Nearctic influence (Rodríguez-Correa et al. 2015). The climatic effect of this barrier on the subspecies A. a. aztecus and A. a. minor contrasts with the similar niches found between two haplogroups of the Honduran yellow-shouldered bat Sturnira hondurensis, another Mesoamerican highland bat (Hernández-Canchola 2018).

On the other hand, the Nicaraguan Depression has been considered a major feature determining genetic and biogeographic patterns (Gutiérrez-García and Vázquez-Domínguez 2013). The evolutionary impact of this barrier is reflected in genetic differentiation between sister taxa of vertebrates, including birds (Puebla-Olivares et al. 2008; Arbeláez-Cortés et al. 2010) and snakes (Castoe et al. 2009). Our findings about the separation between A. a. minor and A. a major are similar to the conclusions of Torres-Morales (2019), who considered Nicaraguan Depression as a significant barrier that limits the distribution of Sturnira hondurensis, separating it from its sister species S. burtonlimi.

Table 2 Results of the background similarity pairwise comparisons among the three subspecies of Artibeus aztecus. Observed Schoener’s D and Hellinger’s I values and p-values (p-val) are shown. 

Test D p - val I p - val
Artibeus a. aztecus vs A. a. minor background 0.405 0.01 0.731 0.01
Artibeus a. aztecus vs A. a. major background 0.246 0.01 0.485 0.01
Artibeus a. minor vs A. a. aztecus background 0.405 0.04 0.731 0.03
Artibeus a. minor vs A. a. major background 0.300 0.03 0.620 0.03
Artibeus a. major vs A. aztecus background 0.246 0.01 0.485 0.01
Artibeus a. major vs A. a. minor background 0.300 0.01 0.620 0.01

Speciation, and species limits. There is a debate about how conserved the niches between closely related lineages are (Wiens and Graham 2005). Some previous studies have suggested the presence of phylogenetic niche conservatism in phyllostomid bats (Peterson et al. 1999; Stevens 2006, 2011; Warren et al. 2008), indicating that closely related species share the same climatic preferences. Alternatively, other authors have not found strong support for niche conservatism in phyllostomid bats (Peixoto et al. 2017), suggesting their niche may have evolved either under strong selection or randomly (Diniz-Filho et al. 2010).

However, former phylogenetic niche conservatism may promote ecological speciation. It can occur in areas with high geographic and ecological variations. In such regions, any geographic distance also results in environmental distance, promoting niche divergence. The combined topographic variation and ecological distance reduce dispersal and gene flow between adjacent populations (Gascon et al. 2000; Gehring et al. 2012). Lineages may thus adapt to local niches, leading populations to diverge from the ancestral niche (Pyron et al. 2015).

Here, we found signals of ecological niche differentiation among the three subspecies of Aztec fruit-eating bat (Tables 1 and 2, Figures 2 and 3). The three subspecies of A. aztecus present different climatic preferences that may indicate they are evolving independently. Therefore, further studies are necessary to learn about the evolutionary history of A. aztecus and clarify the taxonomic situation of the three subspecies. Certaintly, it is crucial to consider that the outcome and the interpretation of the similarity tests may be sensitive to the definition of the calibration area and environmental background (Warren et al. 2010), still, they may offer some guidelines to explore speciation mechanisms (Tocchio et al. 2015) and thus determine the taxonomic status of the species. In this study, we defined it using the movement data of a congeneric species of A. aztecus, so the results must be carefully interpreted. Further details on the dispersal capacity for each subspecies might improve reference area estimation for niche models.

It is essential to clarify the phylogenetic relationships among the subspecies to better understand their biogeographic history (Martínez-Gordillo et al. 2010). Studies that analyzed the diversification of Artibeus and the subgenus Dermanura, have included a few samples of at least two subspecies, but not A. a. major (Owen 1987; Hoofer et al. 2008; Redondo et al. 2008; Solari et al. 2009; Baker et al. 2016). Solari et al. (2009) recovered two clades of A. aztecus, represented by samples of A. a. aztecus and A. a. minor, with a genetic divergence of 3.6 % between them, a value that falls in the range necessary for species recognition suggested by Baker and Bradley (2006), so it is crucial to analyze the genetic divergence between the species using a larger number of samples that includes the three subspecies. In addition, morphological analyses that include all subspecies are necessary to assess phenotypic variation and its potential correlation with environmental conditions. A relationship between environmental conditions and morphology has been documented in other Mesoamerican montane species (Rodríguez-Gómez et al. 2013, 2021; Hernández-Canchola 2018).

In sum, our results offer a first look at the ecological variation of Artibeus aztecus and an additional view on understanding the processes that have shaped the diversification of montane bats in Mesoamerica. Climatic divergence among the three subspecies probably are due to the interaction between former ecological niche conservatism and the emergence of geographic barriers, such as the Isthmus of Tehuantepec and the Nicaraguan Depression that promoted the subsequent ecological differentation.

Acknowledgements

We thank the Posgrado en Ciencias Biológicas of the Univerisidad Nacional Autónoma de México (UNAM) and the Consejo Nacional de Ciencia y Teconología (CONACyT, CVU 1002851) for their support for IHC’s masters courses. We thank the following curators and collection managers: Y. Gómez (Mammal Collection of the Zoology Museum of Facultad de Ciencias, UNAM), C. López-González (Mammal Collection of CIDIIR Durango, IPN).

Literature cited

Aguilar, J. M. 2019. Geographic distribution analysis of the genus Xenodacnis (Birds: Thraupidae) using ecological niche modeling. Revista Peruana de Biologia 26:317-324. [ Links ]

Aiello-Lammens, M. E., et al. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541-545. [ Links ]

Arbeláez-Cortés, E., Á. S. Nyári, and A. G. Navarro-Sigüenza. 2010. The differential effect of lowlands on the phylogeographic pattern of a Mesoamerican montane species (Lepidocolaptes affinis, Aves: Furnariidae). Molecular Phylogenetics and Evolution 57:658-668. [ Links ]

Arnone, I. S., et al. 2016. Long-distance movement by a great fruit-eating bat, Artibeus lituratus (Olfers, 1818), in southeastern Brazil (Chiroptera, Phyllostomidae): evidence for migration in Neotropical bats? Biota Neotropica 16:1-6. [ Links ]

Arribas, P., et al. 2013. Integrative taxonomy and conservation of cryptic beetles in the Mediterranean region (Hydrophilidae). Zoologica Scripta 42:182-200. [ Links ]

Baker, R. J., and R. D. Bradley. 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy 87:643-662. [ Links ]

Baker, R. J. , et al. 2016. Higher level classification of Phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropterologica 18:1-38. [ Links ]

Barve, N., et al. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222:1810-1819. [ Links ]

Blair, C., et al. 2019. Cryptic diversity in the Mexican highlands: Thousands of UCE loci help illuminate phylogenetic relationships, species limits and divergence times of montane rattlesnakes (Viperidae: Crotalus). Molecular Ecology Resources 19:349-365. [ Links ]

Boria, R. A., et al. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275:73-77. [ Links ]

Briones, M., et al., 2019. Responses of phyllostomid bats to traditional agriculture in Neotropical montane forests of Southern Mexico. Zoological Studies 58:e9. [ Links ]

Bryson, R. W., et al. 2018. Phylogenomic insights into the diversification of salamanders in the Isthmura bellii group across the Mexican highlands. Molecular Phylogenetics and Evolution 125:78-84. [ Links ]

Buermann, W., et al. 2008. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography 35:1160-1176. [ Links ]

Burgin, C. J., et al. 2018. How many species of mammals are there? Journal of Mammalogy 99:1-14. [ Links ]

Campbell, L., et al. 2015. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20140135. [ Links ]

Castoe, T. A., et al. 2009. Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. Journal of Biogeography 36:88-103. [ Links ]

Cerón-Hernández, J. A., et al. 2022. Diversidad, tipos de dieta de murciélagos y su respuesta a bordes de bosque mesófilo de montaña, Veracruz, México. Ecosistemas y Recursos Agropecuarios 9:e3110. [ Links ]

Cirranello, A., et al. 2016. Morphological diagnoses of higher-level Phyllostomid taxa (Chiroptera: Phyllostomidae). Acta Chiropterologica 18:39-71. [ Links ]

Cobos, M. E, et al. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ:1-15. [ Links ]

Datzmann, T., O. Von Helversen, and F. Mayer. 2010. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology 10:1-14. [ Links ]

Davis, W. B. 1969. A review of the small fruit bats (genus Artibeus) of Middle America. The Southwestern Naturalist 14:15-29. [ Links ]

Daza, J. M., T. A. Castoe, and C. L. Parkinson. 2010. Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 33:343-354. [ Links ]

Diniz-Filho, J. A. F., et al. 2010. Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence. Global Ecology and Biogeography 19:916-926. [ Links ]

Escobar, L. E., et al. 2014. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospatial Health 9:221-229. [ Links ]

Fitzpatrick, B. M., and M. Turelli. 2006. The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution 60:601-615. [ Links ]

Gascon, C., et al. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences of the United States of America 97:13672-13677. [ Links ]

Gehring, P. S., et al. 2012. The influence of riverine barriers on phylogeographic patterns of Malagasy reed frogs (Heterixalus). Molecular Phylogenetics and Evolution 64:618-632. [ Links ]

Guevara, L., and V. Sánchez-Cordero. 2018. Patterns of morphological and ecological similarities of small-eared shrews (Soricidae, Cryptotis) in tropical montane cloud forests from Mesoamerica. Systematics and Biodiversity:1-14. [ Links ]

Gutiérrez-García, T. A., and E. Vázquez-Domínguez. 2013. Consensus between genes and stones in the biogeographic and evolutionary history of Central America. Quaternary Research (United States) 79:311-324. [ Links ]

Heinicke, M. P., T. R. Jackman, and A. M. Bauer. 2017. The measure of success: geographic isolation promotes diversification in Pachydactylus geckos. BMC Evolutionary Biology 17:1-17. [ Links ]

Hending, D. 2021. Niche-separation and conservation biogeography of Madagascar’s fork-marked lemurs (Cheirogaleidae: Phaner): Evidence of a new cryptic species? Global Ecology and Conservation 29:e01738. [ Links ]

Hernández-Canchola, G. 2018. Diversificación de dos especies del género Sturnira (Chiroptera: Phyllostomidae) en Mesoamérica PhD thesis. Universidad Nacional Autónoma de México. [ Links ]

Hijmans, R. J., et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978. [ Links ]

Hoofer, S. R., et al. 2008. Phylogenetics of the fruit-eating bats (Phyllostomidae: Artibeina) inferred from mitochondrial DNA sequences. Occasional Papers, Museum of Texas Tech University:1-15. [ Links ]

Jordano, p., et al. 2011. Frugivores and seed dispersal: mechanisms and cosequences for biodiversity of a key ecological interaction. Biology Letters 7:321-323. [ Links ]

Kraker-Castañeda, C., et al. 2017. Responses of phyllostomid bats to forest cover in upland landscapes in Chiapas southeast Mexico. Studies on Neotropical Fauna and Environment: 1-10. [ Links ]

Kozak, K. H., C. H. Graham, and J. J. Wiens. 2008. Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution 23:141-148. [ Links ]

Kozak, K. H. , and J. J. Wiens. 2006. Does niche conservatism promote speciation? a case study in North American salamanders. Evolution 60:2604-2621. [ Links ]

Lentz, D. L., R. Bye, and V. Sánchez-Cordero. 2008. Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. International Journal of Plant Sciences 169:541-549. [ Links ]

León-Paniagua, L., et al. 2007. Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands. Molecular Phylogenetics and Evolution 42:653-664. [ Links ]

López-González, C., and D. F. García-Mendoza. 2006. Murciélagos de la Sierra Tarahumara, Chihuahua, México. Acta Zoológica Mexicana 22:109-135. [ Links ]

Lorenzo, C., et al. 2017. Diversidad y conservación de los mamíferos terrestres de Chiapas, México. Revista Mexicana de Biodiversidad 88:735-754. [ Links ]

Martínez-Gordillo, D., O. Rojas-Soto, and A. Espinosa de los Monteros. 2010. Ecological niche modelling as an exploratory tool for identifying species limits: An example based on Mexican muroid rodents. Journal of Evolutionary Biology 23:259-270. [ Links ]

Medina-Van Berkum, P., et al. 2020. Community of bats in Cusco National Park, Honduras, a Mesoamerican Cloud Forest, including new regional and altitudinal records. Neotropical Naturalist 3:1-24. [ Links ]

Monteiro, L. R., and M. R. Nogueira. 2011. Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evolutionary Biology 11:1-23. [ Links ]

Morales-Martínez, D. M., H. F. López-Arévalo, and M. Vargas-Ramírez. 2021. Beginning the quest: Phylogenetic hypothesis and identification of evolutionary lineages in bats of the genus Micronycteris (Chiroptera, Phyllostomidae). ZooKeys 1028:135-159. [ Links ]

Muscarella, R., et al. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5:1198-1205. [ Links ]

Osorio-Olvera, L., et al. 2020. ntbox: An R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution 11:1199-1206. [ Links ]

Owen, R. D. 1987. Phylogenetic analyses of the bat subfamily Stenodermatinae (Mammalia: Chiroptera). Special Publications of the Museum Texas Tech University 26:1-65. [ Links ]

Parra-Olea, G., et al. 2012. Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander. Journal of Biogeography 39:353-370. [ Links ]

Peixoto, F. P., F. Villalobos, and M. V. Cianciaruso. 2017. Phylogenetic conservatism of climatic niche in bats. Global Ecology and Biogeography 26:1055-1065. [ Links ]

Peterson, A. T., et al. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213:63-72 [ Links ]

Peterson, A. T., et al. 2011. Ecological niches and geographic distributions. Princeton University Press, New Jersey. [ Links ]

Peterson, A. T., M. Papeş, and M. Eaton. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550-560. [ Links ]

Peterson, A. T. , J. Soberón, and V. Sánchez-Cordero. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265-1267. [ Links ]

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. [ Links ]

Pineda-Lizano, W., and G. Chaverri. 2022. Spatio-temporal distribution and reproductive phenology of Neotropical bat species in an altitudinal gradient in Costa Rica. Mammalian Biology 102:1-12. [ Links ]

Puebla-Olivares, F., et al. 2008. Speciation in the emerald toucanet (Aulacorhynchus prasinus) complex. The Auk 125:39-50. [ Links ]

Pyron, R. A., et al. 2015. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews 90:1248-1262. [ Links ]

Redondo, R. A. F., et al. 2008. Molecular systematics of the genus Artibeus (Chiroptera: Phyllostomidae). Molecular Phylogenetics and Evolution 49:44-58. [ Links ]

Rissler, L. J., and J. J. Apodaca. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology 56:924-942. [ Links ]

Roberts, T. E. 2006. Multiple levels of allopatric divergence in the endemic Philippine fruit bat Haplonycteris fischeri (Pteropodidae). Biological Journal of the Linnean Society 88:329-349. [ Links ]

Rodríguez-Correa, H., et al. 2015. How are oaks distributed in the neotropics? A perspective from species turnover, areas of endemism, and climatic niches. International Journal of Plant Sciences 176:222-231. [ Links ]

Rodríguez-Gómez, F., C. Gutiérrez-Rodríguez, and J. F. Ornelas. 2013. Genetic, phenotypic and ecological divergence with gene flow at the Isthmus of Tehuantepec: the case of the azure-crowned hummingbird (Amazilia cyanocephala). Journal of Biogeography 40:1360-1373. [ Links ]

Rodríguez-Gómez, F. , et al. 2021. Phylogeography, morphology and ecological niche modelling to explore the evolutionary history of Azure-crowned Hummingbird (Amazilia cyanocephala, Trochilidae) in Mesoamerica. Journal of Ornithology 162:529-547. [ Links ]

Saldaña-Vázquez, R. A. 2014. Intrinsic and extrinsic factors affecting dietary specialization in Noeotropical frugivorous bats. Mammal Review 44:215-224. [ Links ]

Schoener, T. W. 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704-726. [ Links ]

Segura-Trujillo, C. A., and S. Navarro-Pérez. 2010. Escenario y problemática de conservación de los murciélagos (Chiroptera) cavernícolas del Complejo Volcánico de Colima, Jalisco-Colima, México. Therya 1:189-206. [ Links ]

Soberón, J., and M. Nakamura. 2009. Niches and distributional areas: concepts, methods and assumptions. Proceedings of the National Academy of Sciences 106:19644-19650. [ Links ]

Solari, S., et al. 2009. Operational criteria for genetically defined species: analysis of the diversification of the small fruit-eating bats, Dermanura (Phyllostomidae: Stenodermatinae). Acta Chiropterológica 11:279-288. [ Links ]

Solari, S., et al. 2019. Family Phyllostomidae. Pp. 444-583, in Handbook of the Mammals of the World - Volume 9. Bats (Wilson, D. E., and R. A. Mittermeier, eds.). Lynx Edicions. Barcelona, Spain. [ Links ]

Stevens, R. D. 2006. Historical processes enhance patterns off diversity along latitudinal gradients. Proceedings of the Royal Society B: Biological Sciences 273:2283-2289. [ Links ]

Stevens, R. D. 2011. Relative effects of time for speciationand tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. Proceedings of the Royal Society B: Biological Sciences 278:2528-2536. [ Links ]

Sullivan, J., E. Arellano, and D. Rogers. 2000. Comparative phylogeography of Mesoamerican highland rodents: concerted versus independent response to past climatic fluctuations. The American Naturalist 155:755. [ Links ]

Tocchio, L. J., et al. 2015. Niche similarities among white-eared opossums (Mammalia, Didelphidae): Is ecological niche modelling relevant to setting species limits? Zoologica Scripta 44:1-10. [ Links ]

Torres-Morales, L. 2019. Límites de distribución actual de Sturnira hondurensis. Revista Mexicana de Biodiversidad 90:1-9. [ Links ]

Turelli, M., N. H. Barton, and J. A. Coyne. 2001. Theory of Speciation. Trends in Ecology and Evolution 16:330-343. [ Links ]

Wang, B. C., and T. B. Smith. 2002. Closing the seed dispersal loop. Trends in Ecology and Evolution 17:379-386. [ Links ]

Warren, D. L., et al. 2021. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44:1-8. [ Links ]

Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868-2883. [ Links ]

Warren, D. L. , R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607-611. [ Links ]

Wiens, J. J., and C. H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519-539. [ Links ]

Zamora-Mejías, D., and B. Rodríguez-Herrera. 2017. Murciélagos (Chiroptera) del bosque premontano de San Ramón, Costa Rica. Revista Pnesamiento Actual 17:105-113. [ Links ]

Zink, R. M. 2012. The geography of speciation: case studies from birds. Evolution: Education and Outreach 5:541-546. [ Links ]

0Associated editor: Jake Esselstyn and Giovani Hernández Canchola

Received: July 26, 2022; Revised: November 30, 2022; Accepted: December 01, 2022

*Corresponding author: https://orcid.org/0000-0002-1748-0915.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License