SciELO - Scientific Electronic Library Online

 
vol.29 número1Historial de incendios basado en técnicas dendrocronológicas para un bosque de coníferas en la región sureste de Jalisco, MéxicoCaracterización estructural y clasificación de los bosques piñoneros de San Luis Potosí, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.29 no.1 Chapingo ene./abr. 2023  Epub 23-Jun-2024

https://doi.org/10.5154/r.rchscfa.2022.05.034 

Scientific articles

New hosts for Desarmillaria caespitosa and Armillaria mexicana in Veracruz and Michoacán, Mexico

Dionicio Alvarado-Rosales1 

Rubén Damián Elías-Román2  * 

Luz de L. Saavedra-Romero1 

Jeny Michua-Cedillo3 

Salvador Ochoa-Ascencio4 

John W. Hanna5 

Ned B. Klopfenstein5 

Mee-Sook Kim6 

Patricia Rivas-Valencia7 

Rafael Rojas-Rojas1 

1Colegio de Postgraduados, Campus Montecillo, Programa de Fitosanidad-Fitopatología. km 36.5 carretera México-Texcoco, Montecillo. C. P. 56230. Texcoco, Estado de México, México.

2Universidad de Guanajuato, Campus Irapuato-Salamanca, División de Ciencias de la Vida (DICIVA), Departamento de Agronomía. Exhacienda El Copal, km 9 Carretera Irapuato-Silao. C. P. 36824. Irapuato, Guanajuato, México.

3Laboratorio de Análisis Fitosanitarios (LAFIT). Prolongación Mazatlán núm. 1533, col. La Magdalena. C. P. 60080. Uruapan, Michoacán, México.

4Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Agrobiología “Presidente Juárez”. Paseo Lázaro Cárdenas 2290, Emiliano Zapata. C. P. 60170. Uruapan, Michoacán, México.

5USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main Street, Moscow, Idaho 83843, USA.

6USDA Forest Service, Pacific Northwest Research Station, 3200 SW. Jefferson Way, Corvallis, Oregon 97331 USA.

7Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Valle de México. km 13.5 carretera Los Reyes-Texcoco. C. P. 56250. Coatlinchán, Estado de México, México.


Abstract

Introduction:

The identification of Armillaria and Desarmillaria species associated with Armillaria root disease is important to determine management strategies, due to their variation in pathogenicity and virulence.

Objective:

To identify Desarmillaria/Armillaria species associated with lychee (Litchi chinensis Sonn.), avocado (Persea americana Mill.), and pine (Pinus sp.) trees with symptoms and signs of Armillaria root disease.

Materials and methods:

Root samples were collected from trees with signs and symptoms of Armillaria root disease from lychee trees in Veracruz, three avocado orchards in Michoacán, and a forest area in Michoacán. Eight fungal isolates were identified based on DNA sequences of the translation elongation factor 1-alpha (tef1) gene.

Results:

Based on tef1 sequences, three isolates obtained from lychee trees in Veracruz were identified as Desarmillaria caespitosa; four isolates obtained from avocado trees and one from a pine tree in Michoacán were identified as Armillaria mexicana. Fungal isolates are deposited in the fungal culture collection of USDA Forest Service, RMRS, Moscow, Idaho, USA, and tef1 sequences are deposited in GenBank.

Conclusion:

This study represents the first reports of D. caespitosa on lychee in Veracruz and A. mexicana on avocado and pine trees in Michoacán, Mexico.

Key words: Persea americana; Litchi chinensis; Pinus sp.; root disease; tef1 gene

Resumen

Introducción:

La identificación de las especies de Armillaria y Desarmillaria asociadas con la pudrición de raíces por Armillaria es importante para determinar estrategias de manejo, debido a su variación en patogenicidad y virulencia.

Objetivo:

Identificar las especies de Desarmillaria/Armillaria asociadas con árboles de litchi (Litchi chinensis Sonn.), aguacate (Persea americana Mill.) y pino (Pinus sp.) con síntomas y signos de la pudrición de raíces por Armillaria.

Materiales y métodos:

Se colectaron muestras con signos y síntomas de la pudrición de raíces por Armillaria en árboles de litchi en Veracruz, en tres huertos de aguacate y en una zona forestal en Michoacán. Ocho aislamientos fúngicos se identificaron mediante la secuenciación del gen factor de elongación 1-alpha (tef1).

Resultados:

Con base en las secuencias de tef1, tres aislamientos de árboles de litchi en Veracruz se identificaron como Desarmillaria caespitosa; cuatro aislamientos de árboles de aguacate y uno de pino en Michoacán se identificaron como Armillaria mexicana. Los aislamientos fúngicos están depositados en la colección de hongos del Servicio Forestal del USDA, RMRS, Moscow, Idaho, EUA y las secuencias del tef1 están depositadas en el GenBank.

Conclusión:

Este trabajo constituye los primeros reportes de D. caespitosa en litchi en Veracruz y A. mexicana en aguacate y pino en Michoacán, México.

Palabras clave: Persea americana; Litchi chinensis; Pinus sp.; pudrición de raíces; gen tef1.

Highlights:

  • Armillaria root disease-caused mortality of avocado trees was associated with Armillaria mexicana.

  • Armillaria root disease-caused mortality of lychee trees was associated with Desarmillaria caespitosa.

  • Pines stump could serve as Armillaria inoculum for avocado orchards established in cleared forest areas.

Introduction

The Armillaroid fungi have continued to undergo taxonomic revisions; among them, the incorporation of the genera Guyanagaster T. W. Henkel, M. E. Smith & Aime and Desarmillaria (Herink) R. A. Koch & Aime. The latter contains species without an annulus or ring in the basidiome stipe, which were previously grouped in the genus Armillaria (Fr.) Staude. Armillaria comprises approximately 40 species, some recently described (Elías-Román et al., 2008; Kim et al., 2022; Koch, Wilson, Séne, Henkel, & Aime, 2017).

Desarmillaria comprises three species, D. tabescens (Scop.) R. A. Koch & Aime and D. ectypa (Fr.) R. A. Koch & Aime, both from Eurasia, along with the recently redescribed vicariant, D. caespitosa (Berk.) Antonín, J. E. Stewart & Medel, from the USA and Mexico (Antonín et al., 2021). The recently established taxonomic combination, D. caespitosa (basionym: Lentinus caespitosus Berk.), was previously reported as Clitocybe tabescens (Fr.) Bres. by Cohen (1955) and Desarmillaria tabescens by Miller et al. (2020) causing tree mortality in lychee (Litchi chinensis Sonn.) and peach (Prunus persica [L.] Batsch) orchards, respectively in the southeastern USA. In Veracruz, Mexico, D. caespitosa has been reported as Armillaria tabescens (Scop.) Emel infecting araucaria tree (Araucaria araucana [Molina] K. Koch) in an urban area (Kim et al., 2010); however, D. caespitosa has not been previously documented in association with the lychee trees in the primary lychee-production area in Mexico (Sistema de Información Agroalimentaria y Pesca [SIAP], 2019). The presence of Armillaria spp. has been reported affecting avocado (Persea americana Mill.) orchards in several municipalities in the state of Michoacán, which represents the main avocado-producing area in the world; however, the presence and identification of the Armillaria spp. has not been confirmed in a refereed journal (Hernández-Ramos, Moreno-Velázquez, López-Buenfil, Zelaya-Molina, & Elías-Román, 2018; Michua-Cedillo et al., 2016; Ordas-Ochoa, 2017).

Accurate identification of Armillaria and Desarmillaria species is critical because these species display diverse ecological behaviors and occupy disparate geographic areas. For example, these genera contain species that vary in pathogenicity and virulence (Cleary, van der Kamp, & Morrison, 2012; Kim et al., 2022; Nowakowska et al., 2020); some Armillaria and Desarmillaria species are symbionts of orchids (Gastrodia elata Blume) cultivated for medicinal purposes (Guo, Wang, Xue, Zhao, & Yang, 2016) and other fungi (Polyporus umbellatus [Pers.]) (Xing, Men, & Guo, 2017). Among other ecological functions, one species, A. altimontana Brazee, B. Ortiz, Banik & D. L. Lindner, was reported as a potential biological control agent against a virulent species, A. solidipes Peck. (Warwell et al., 2019).

Because Armillaria and Desarmillaria species associated with tree disease and mortality possess differences in virulence, host range, and climatic adaption (potential geographic range), it especially is important to identity the pathogenic species to develop/apply appropriate disease management practices. Previously, the species of these genera were identified primarily by basidiomata morphology, but basidiomata are ephemeral, produced only sporadically depending on the environmental conditions, and some species may exhibit similar morphology. Biological species defined by interfertility also contributed to the identification process for Armillaria and Desarmillaria species (Anderson & Ullrich, 1979; Korhonen, 1978), but interfertility can be observed among disparate species that have been geographically separated (Heinzelmann et al., 2019; Klopfenstein et al., 2017). In recent decades, DNA sequences have been demonstrated to be especially useful for species identification of these genera (Heinzelmann et al., 2019). The sequences of translation elongation factor 1-alpha (tef1) allow the identification of Armillaria species that cannot be identified by ribosomal DNA, such as internal transcribed spacer (ITS) with the 3’ end of the large subunit (LSU), and the intergenic spacer 1 (IGS1) (3' LSU-IGS1) (Kim, Klopfenstein, Hanna, & McDonald, 2006; Klopfenstein et al., 2017). For the aforementioned reasons, the objective of this study was to identify the Armillaria/Desarmillaria species associated with hosts (lychee, avocado, and pine) with signs and/or symptoms of Armillaria root disease within or in close proximity to orchards of Veracruz and Michoacán, Mexico.

Materials and methods

Collection sites

During October and November 2019, surveys were conducted on a) trees of lychee variety 'Racimo Rojo' (average stem circumference at 40 cm above ground level = 48.5 cm; 15 years after plantation establishment) within orchard #1 (18.659528, -96.920972, 609 m) in Zacatal Chico, Zongolica, Veracruz; b) three orchards of avocado ‘Hass’ variety on rootstocks of the Mexican landrace Persea americana var. drymifolia (Schltdl. & Cham.) S. F. Blake, with trees of 3-3.5 m height and 4-5 years average age since establishment in Michoacán: orchard #2 (19.334982, -102.165026; 1 674 m); orchard #3 (19.34375, -102.17336; 1 667 m) in La Escondida, Uruapan; and orchard #4 (19.384093, -102.18279; 2 115 m) located in Los Lobos, Nuevo Parangaricutiro, and c) a root of pine stump (unidentified Pinus species) in a forest area (19.38106, -102.18420, 2 052 m) adjacent to orchard #4 in Nuevo Parangaricutiro, Michoacán.

Sampling and isolation of Armillaria/Desarmillaria

Recently dead trees or trees with wilt symptoms were selected for sampling. The root system of the trees was inspected and excavated to observe signs (rotten wood, mycelial fans, rhizomorphs, and/or basidiomata) typical of Armillaria root disease (Figure 1). The fungus was isolated from infected roots of trees following the procedure described by Harrington, Worrall, and Baker (1992) in Benomyl-Dichloran-Streptomycin (BDS) medium, and incubated for 3-5 weeks at room temperature (20-26 °C). Subsequently, the fungal isolates were transferred to a nylon filter overlaying 3 % malt-agar medium to obtain abundant mycelial from which DNA was extracted.

Figure 1 Symptoms and signs of Armillaria root disease in lychee (Litchi chinensis) and avocado (Persea americana). a) Avocado orchard with an asymptomatic tree and another symptomatic (chlorosis and decline) tree; b) Sudden mortality of an avocado tree; c) Cortical cracking with dark-colored exudate due to Armillaria mexicana infection near the base of avocado stem; d) Mycelial fan in symptomatic avocado tree crown; e) Rhizomorphs attached to an avocado root; f) Mycelial fan of Desarmillaria caespitosa on the root of a recently dead lychee tree; and g) D. caespitosa basidiomata on lychee tree base. 

Tef1 amplification, sequencing, and sequence analyses

PCR amplification and sequencing of tef1 gene followed the protocol of Elías-Román et al. (2018); and DNA sequences were manually edited and aligned with BioEdit 7.1 (Hall, 1999). Polymorphic sites were coded using the IUPAC codes for ambiguous nucleotides. Edited tef1 sequences of isolates obtained from avocado, lychee, and pine trees were compared with sequences available in the NCBI (National Center for Biotechnology Information) database using BLAST nucleotide search and deposited in GenBank. Isolates derived from mycelial fans were deposited at the USDA Forest Service, Rocky Mountain Research Station (RMRS), Forest Sciences Laboratory in Moscow, Idaho, USA.

Results and Discussion

Detection of Armillaria root disease

Eight isolates were obtained from mycelial fans of infected roots. The three isolates (Ver2, Ver4, and Ver5) that were collected from recently dead lychee trees of orchard #1, displayed cottony, whitish growth, without the presence of rhizomorphs in 3% malt-agar medium after approximately 4 weeks of culture. Four other isolates (Mich32, Mich35, Mich51, and Mich52) were obtained from recently dead and symptomatic ‘Hass’ avocado trees grafted on P. americana var. drymifolia rootstocks: The isolates Mich32 and Mich35 were collected from orchards #2 and 3, respectively, in La Escondida, Uruapan, Michoacán; isolates Mich51 and Mich52 were collected in orchard #4 in Los Lobos, Nuevo Parangaricutiro, Michoacán. Mich51 was isolated from an avocado tree with symptoms of decline and cortical cracking, with a dark-colored exudate near the base of the stem (Figures 1a, 1c, and 1d), and other isolates (Mich32, Mich35, and Mich52) were obtained from recently dead trees. Another isolate (Mich4) was obtained from a pine stump in an area adjacent to orchard #4 of avocado. Isolates obtained from avocado trees and pine stump formed crustose mycelium of variable color (light to dark brown) that produced abundant rhizomorphs, and culture exudates that produced a brown stain in the culture medium.

Tef1 sequence analyses

Three isolates (Ver2, Ver4, and Ver5) collected from roots (Figure 1f) of lychee trees from orchard #1 in Zongolica, Veracruz were identified as D. caespitosa based on 1215 bp sequences of tef1 (GenBank accession numbers: MZ851975, MZ851976, and MZ851977 for Ver2, Ver4 and Ver5, respectively), which displayed a very high similarity (99.7 %) with available tef1 sequences in GenBank BLAST that were derived from D. caespitosa isolates, such as GenBank Accession No. MT232068 from isolate OOI-210 obtained from peach (Antonín et al., 2021). Armillaria root disease due to D. caespitosa (reported as Clitocybe tabescens) has been associated with the mortality of lychee trees, and management strategies were subsequently recommended, such as reducing inoculum sources, among other measures (Cohen, 1955). Volk & Burdsall (1995) previously considered C. tabescens as a synonym for A. tabescens; however, the North American vicariant of A. tabescens s. l. is currently recognized as D. caespitosa (Antonín et al., 2021).

The five isolates collected from avocado and pine were identified as A. mexicana R. Elías, Medel, Alvarado, Hanna, Ross-Davis, Kim, & Klopfenstein based on tef1 sequences (GenBank accessions Nos. MZ851978, MZ851979, MZ851980, MZ851981, and MZ851982 for isolated Mich4, Mich32, Mich35, Mich51, and Mich52, respectively). A tef1 sequence length of 1 150 bp was obtained from isolate Mich32, and 1202 bp sequences were obtained from isolates Mich4, Mich35, Mich51, and Mich52. The GenBank nucleotide Blast displayed an extremely high similarity (99.9 %) for tef1 from these five isolates with that of A. mexicana (GenBank Accession No KR061313). This species, first reported as Armillaria sp., was previously found in Zinapécuaro, Michoacán causing mortality of peach and plum (reported as Prunus domestica) trees (Rivas-Valencia et al., 2017), and A. mexicana was also previously found to be pathogenic and more virulent than A. mellea (Vahl) P. Kumm on four Prunus spp. evaluated in greenhouse and field conditions in the State of Mexico (Elías-Román et al., 2019), where it was also previously reported on an oak (Quercus sp.) stump in a forest area (Elías-Román et al., 2018). Other investigations mentioned the presence of A. mexicana on trees of 'Hass' avocado grafted onto Mexican landrace seedling rootstocks; however, tef1 sequences were not deposited in GenBank to allow verification of these previous identifications (Hernández-Ramos et al., 2018; Michua-Cedillo et al., 2016). Of note is that sequences of 3’ LSU-IGS1 of ribosomal DNA in GenBank (Accession Nos. KU378660, KU378658, KU378657, KU378654, KU378655, KU378659) show high similarity with A. mexicana (GenBank Accession No. KR061306); however, those GenBank accessions are not associated with in any publication that discusses their origins. The 3’ LSU-IGS1 region is useful in the identification of A. mexicana (Elías-Román et al., 2013), but it cannot distinguish among some Armillaria species such as A. gallica Marxm. & Romagn., A. sinapina Bérubé & Dessur. and A. cepistipes Velen. (Kim et al., 2006). Additionally, several Armillaria species have very diverse 3’ LSU-IGS1 sequences that could not be aligned unambiguously for phylogenetic analysis.

Climate-change projections suggest that Armillaria root disease will likely increase in areas where the climate will become less suitable for hosts, while remaining suitable for pathogens (Kim et al., 2021; Klopfenstein, Kim, Hanna, Richardson, & Lundquist, 2011). In addition, we consider that incidence and severity of Armillaria root disease could increase in several fruit-growing areas of Mexico due to multiple factors, such as 1) use of substrates contaminated with Armillaria/Desarmillaria propagules for plant propagation in nurseries; 2) change of land use (e.g., replacement of pine-oak forest with fruit orchards) that could promote the spread of pathogenic Armillaria/Desarmillaria species, from previously occupied forested sites; 3) use of trees that are maladapted to the site or become maladapted due to climate change; and/or 4) other biotic and abiotic disturbances that create conditions suitable for Armillaria root disease.

Conclusions

Armillaria root disease in ‘Hass’ avocado trees on Mexican landrace rootstocks Persea americana var. drymifolia in orchards in Michoacán was associated with the presence of Armillaria mexicana. This species was also isolated from a pine tree roots in a forest near avocado orchards, which could represent an inoculum source for infection in avocado orchards established in areas where the natural forest was cleared. In addition, Desarmillaria caespitosa was identified in association with Armillaria root disease of recently dead lychee trees in Zongolica, Veracruz. This study represents the first reports of A. mexicana causing Armillaria root disease on avocado and pine in Michoacán, and D. caespitosa causing Armillaria root disease on lychee in Veracruz. These results add to baseline information on the distribution and host associations of these Armillaria root disease pathogens.

Acknowledgements

All authors appreciate the funding provided by SENASICA (National Health, Safety and Food Quality Service) and USDA Forest Service, State and Private Forestry, Forest Health Protection, Region 5. We also thank Ing. Jaime Domínguez Pérez for allowing sample collection of lychee tree samples from orchard #1.

References

Anderson, J. B., & Ullrich, R. C. (1979). Biological species of Armillaria mellea in North America. Mycologia, 71(2), 402-414. doi: 10.1080/00275514.1979.12021018 [ Links ]

Antonín, V., Stewart, J. E., Medel Ortiz, R., Kim, M.-S., Bonello, P., Tomšovský, M., & Klopfenstein, N. B. (2021). Desarmillaria caespitosa, a North American vicariant of D. tabescens. Mycologia, 113(4), 776-790. doi: 10.1080/00275514.2021.1890969. [ Links ]

Cleary, M. R., van der Kamp, B. J., & Morrison, D. J. (2012). Pathogenicity and virulence of Armillaria sinapina and host response to infection in Douglas-fir, western hemlock and western redcedar in the southern Interior of British Columbia. Forest Pathology, 42(6), 481-491. doi: 10.1111/j.1439-0329.2012.00782.x [ Links ]

Cohen, M. (1955). Clitocybe rot of lychee trees. Florida State Horticultural Society, 68, 329-332. [ Links ]

Elías-Román, R. D., Calderón-Zavala, G., Guzmán-Mendoza, R., Vallejo-Pérez, M. R., Klopfenstein, N. B., & Mora Aguilera, J. A. (2019). ‘Mondragon’: a clonal plum rootstock to enhance management of Armillaria root disease in peach orchards of Mexico. Crop Protection, 121, 89-95. doi: 10.1016/j.cropro.2019.03.011 [ Links ]

Elías-Román, R. D., Guzmán-Plazola, R. A., Klopfenstein, N. B., Alvarado-Rosales, D., Calderón-Zavala, G., Mora-Aguilera, J. A., …García-Espinosa, R. (2013). Incidence and phylogenetic analyses of Armillaria spp. associated with root disease in peach orchards in the State of Mexico, Mexico. Forest Pathology, 43(5), 390-401. doi: 10.1111/efp.12043 [ Links ]

Elías-Román, R. D., Medel, R., Klopfenstein, N. B., Hanna, J. W., Kim, M. S., & Alvarado-Rosales, D. (2018). Armillaria mexicana (Agaricales, Physalacriaceae), a newly described species from Mexico. Mycologia, 110(2), 347-360. doi: 10.1080/00275514.2017.1419031 [ Links ]

Guo, T., Wang, H. C., Xue, W. Q., Zhao, J., & Yang, Z. L. (2016). Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS ONE, 11(5), e0154794, doi: 10.1371/journal.pone.0154794 [ Links ]

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT. Nucleic Acids Symposium Series, 41, 95-98. [ Links ]

Harrington, T. C., Worrall, J. J., & Baker, F. A. (1992). Armillaria. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.), Methods for research on soilborne phytopathogenic fungi (pp. 81-85). St. Paul, MN, USA: APS Press. [ Links ]

Heinzelmann, R., Dutech, C., Tsykun, T., Labbé, F., Soularue, J.-P., & Prospero, S., (2019). Latest advances and future perspectives in Armillaria research. Canadian Journal of Plant Pathology, 41(1), 1-23. doi: 10.1080/07060661.2018.1558284 [ Links ]

Hernández-Ramos, L., Moreno-Velázquez, M., López-Buenfil, J. A., Zelaya-Molina, L. X., & Elías-Román, R. D. (2018). Identificación molecular de aislamientos de Armillaria sp. de aguacate en Michoacán. Revista Mexicana de Fitopatología, 36, S5-6. Retrieved from https://www.smf.org.mx/rmf/suplemento/docs/Volumen362018/S362018.pdfLinks ]

Kim, M.-S., Hanna, J. W., Stewart, J. E., Warwell, M. V., McDonald, G. I., & Klopfenstein, N. B. (2021). Predicting present and future suitable climate spaces (potential distributions) of and Armillaria root disease pathogen (Armillaria solidipes) and its host, Douglas-fir (Pseudotsuga menziesii), under changing climates. Frontiers in Forests and Global Change, 4, 740994. doi: 10.3389/ffgc.2021.740994 [ Links ]

Kim, M.-S., Heinzelmann, R., Labbé, F., Ota, Y., Elías-Román, R. D., Pildain, M. B., … Klopfentein, N. B. (2022). Armillaria root diseases of diverse trees in wide-spread global regions. In F. O. Asiegbu, & A. A. Kovalchuk (Eds.), Forest microbiology forest tree health (vol. 2, pp. 361-378). London, UK: Academic Press (Elsevier). doi: 10.1016/B978-0-323-85042-1.00004-5 [ Links ]

Kim, M. -S., Klopfenstein, N. B., Hanna, J. W., Cannon, P., Medel, R., & López, A. (2010). First report of Armillaria root disease caused by Armillaria tabescens on Araucaria araucana in Veracruz, México. Plant Disease, 94(6), 784. doi: 10.1094/PDIS-94-6-0784B [ Links ]

Kim, M.-S., Klopfenstein, N. B., Hanna, J. W., & McDonald, G. I. (2006). Characterization of North American Armillaria species: genetic relationships determined by ribosomal DNA sequences and AFLP markers. Forest Pathology, 36(3), 145-164. doi: 10.1111/j.1439-0329.2006.00441.x [ Links ]

Klopfenstein, N. B., Kim, M. -S., Hanna, J. W., Richardson, B. A., & Lundquist, J. E. (2011). Approaches to predicting potential impacts of climate change on forest disease: An example with Armillaria root disease. In D. M. Chavarriaga H. (Ed.), Protección fitosanitaria forestal (pp. 101-117). Colombia: Divegraficas Ltda. [ Links ]

Klopfenstein, N. B., Stewart, J. E., Ota, Y., Hanna, J. W., Richardson, B. A., Ross-Davis A. L., …Kim, M. -S. (2017). Insights into the phylogeny of Northern Hemisphere Armillaria: neighbor-net and Bayesian analyses of translation elongation factor 1-a gene sequences. Mycologia, 109(1), 75-91. doi: 10.1080/00275514.2017.1286572 [ Links ]

Koch, R. A., Wilson, A. W., Séné, O., Henkel, T. W., & Aime, C. (2017). Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evolutionary Biology, 17, 33. doi: 10.1186/s12862-017-0877-3 [ Links ]

Korhonen, K. (1978). Interfertility and clonal size in the Armillaria mellea complex. Karstenia, 18(2), 31-42. doi: 10.29203/ka.1978.135 [ Links ]

Michua-Cedillo, J., Teliz-Ortiz, D., Ochoa-Ascencio, S., Rodríguez-Guzmán, M. P., Alarcón, A., De León, C., & Vázquez-Marrufo, G. (2016). Armillaria gallica agente causal de la pudrición de raíz y muerte de árboles de aguacate en Michoacán, México. Retrieved from https://docplayer.es/168754986-Armillaria-gallica-agente-causal-de-la-pudricion-de-raiz-y-muerte-de-arboles-de-aguacate-en-michoacan-mexico-resumen.htmlLinks ]

Miller, S. B., Gasic, K., Reighard, G. L., Henderson, W. G., Rollins, P. A., Vassalos, M., & Schnabel, G. M. (2020). Preventative root-collar excavation reduces peach tree mortality caused by Armillaria root rot on replant sites. Plant Disease, 104(5), 1274-1279. doi: 10.1094/PDIS-09-19-1831-RE [ Links ]

National Center for Biotechnology Information (NCBI). (2021). Basic Local Alignment Search Tool-Gen Bank overview. Retrieved from https://www.ncbi.nlm.nih.gov/genbank/Links ]

Nowakowska, J. A., Stocki, M., Stocka, N., Slusarski, S., Tkaczyk, M., Caetano, J. M., … Oszako, T. (2020). Interactions between Phytophthora cactorum, Armillaria gallica and Betula pendula Roth. Seedlings subjected to defoliation. Forest, 11(10), 107. doi: 10.3390/f11101107 [ Links ]

Ordas-Ochoa, J. A. (2017). Identificación genética y patogénica de especies de Armillaria (Vahl.:Fr.) Karsten asociadas a Persea americana Miller var. drymifolia (Schltdl. y Cham) S. F. Blake. Tesis de Maestría, Ciencias Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, México. Retrieved from http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/2072Links ]

Rivas-Valencia, P., Almaraz-Sánchez, A., Cano-Salgado, A., Hernández-Ramos, L., Alanís-Martínez, I., & Fernández-Montes, M. R. (2017). Muerte descendente de Prunus sp. asociada a Armillaria spp. en huertas comerciales de Michoacán, México. Revista Mexicana de Fitopatología, 35(3), 463-475. doi: 10.18781/r.mex.fit.1702-1 [ Links ]

Sistema de Información Agroalimentaria y Pesquera (SIAP). (2019). Anuario estadístico de la producción agrícola. Retrieved from https://nube.siap.gob.mx/cierreagricola/Links ]

Volk, T. J., & Burdsall, H. H. Jr. (1995). A nomenclatural study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae). Oslo, Norway: Fungiflora. [ Links ]

Warwell, M. V., McDonald, G. I., Hanna, J. W., Kim, M.-S., Lalande, B. M., Stewart, J. E., & Klopfenstein, N. B. (2019). Armillaria altimontana is associated with healthy western white pine (Pinus monticola) planted in northern Idaho: Evidence for in situ biological control of A. solidipes. Forests, 10(4), 294. doi: 10.3390/f10040294 [ Links ]

Xing, X., Men, J., & Guo, S. (2017). Phylogenetic constrains on Polyporus umbellatus-Armillaria associations. Scientific Reports, 7, 4226. doi: 10.1038/s41598-017-04578-9 [ Links ]

Received: May 11, 2022; Accepted: October 17, 2022

*Corresponding author: rd.elias@ugto.mx; tel.: +52 462 624 1889 ext. 5209.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License