SciELO - Scientific Electronic Library Online

 
vol.98 número1Actividades antivirulencia de algunas especies de Tillandsia (Bromeliaceae)Reconocimiento y usos tradicionales de plantas en una comunidad indígena migrante de San Luis Potosí, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.98 no.1 México ene./mar. 2020  Epub 20-Jun-2020

https://doi.org/10.17129/botsci.2423 

Etnobotánica

Agroforestry systems of a Zapotec community in the Northern Sierra of Oaxaca, Mexico

Sistemas agroforestales de una comunidad zapoteca de la Sierra Norte de Oaxaca, México

Sunem Pascual-Mendoza1 
http://orcid.org/0000-0001-5700-510X

Gladys Isabel Manzanero-Medina1  * 
http://orcid.org/0000-0003-2496-3648

Alfredo Saynes-Vásquez2 
http://orcid.org/0000-0003-2547-6657

Marco Antonio Vásquez-Dávila3 
http://orcid.org/0000-0001-7603-810X

1Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Unidad Oaxaca. México.

2Instituto Saynes de Investigaciones sobre Cultura, Juchitán, Oaxaca, México.

3 Instituto Tecnológico del Valle de Oaxaca. Oaxaca, México.


Abstract

Background:

Agroforestry systems have cultural, economic, social, and biodiversity conservation significance and are essential for the subsistence of communities.

Questions:

Is there a difference in the richness, management and use of useful plants present in the agroforestry systems (home gardens, coffee plantations, and milpa)? What is the influence of sociodemographic factors on the distribution of traditional knowledge regarding plants of these systems?

Site and years of study:

Las Delicias, municipality of Juquila Vijanos, Sierra Norte of Oaxaca, Mexico, from January 2016 to May 2018.

Methods:

Visits to three agroforestry systems and semistructured interviews with 30 families to learn how they use the plants and to calculate the use value (UV) for each species. The similarity of floristic composition between agroforestry systems and the influence of sociodemographic factors (age, gender, schooling, economic activity and language) in the traditional plant knowledge was evaluated. The methods used were chi squared and proportions analyses, and a generalized linear analysis with Poisson distribution.

Results:

The three agroforestry systems consisted of 211 of useful plants; home gardens and coffee plantations had a greater similarity in floristic composition; the dissimilarity of the milpa agroecosystem is related to seasonality. The plants with higher UVs were those with multiple uses, and are found mainly in coffee plantations. Production in these spaces is complemented to satisfy the needs of the inhabitants. Gender and economic activity are factors that influence the distribution of traditional knowledge.

Conclusion:

Agroforestry systems provide a species richness differentiated for specific purposes but complementary to each other.

Key words: coffee plantation; home gardens; milpa; use value

Resumen

Antecedentes:

Los sistemas agroforestales tradicionales tienen una importancia cultural, económica, social y en conservación de la biodiversidad; son esenciales en la subsistencia de las comunidades.

Pregunta:

¿Existe diferencia en la riqueza, manejo y uso de plantas útiles presentes en los sistemas agroforestales (huertos familiares, cafetales, milpa)? ¿Cuál es la influencia de los factores sociodemográficos en la distribución del conocimiento tradicional sobre las plantas de estos sistemas?

Sitio y años de estudio:

Las Delicias, municipio de Juquila Vijanos, Sierra Norte de Oaxaca, México; de enero de 2016 a mayo de 2018.

Métodos:

Recorridos por tres sistemas agroforestales y entrevistas semiestructuradas a 30 familias, para calcular el Valor de Uso de cada especie vegetal. Se evaluó la similitud de la composición florística entre los sistemas agroforestales y la influencia de factores sociodemográficos (edad, sexo, escolaridad, ocupación e idioma) en el conocimiento tradicional de plantas, mediante pruebas de Ji cuadrada, de proporciones y de un modelo lineal generalizado con distribución Poisson.

Resultados:

Los sistemas agroforestales estudiados conservan 211 especies vegetales útiles; los huertos familiares y los cafetales tienen una mayor similitud florística; la disimilitud del sistema milpa se relaciona con su temporalidad. Las plantas con mayor Valor de Uso fueron las que tienen múltiples usos y presentes en los cafetales. La producción se complementa para satisfacer las necesidades de los pobladores. El sexo y la ocupación están influyendo en la distribución del conocimiento tradicional.

Conclusión:

Los sistemas agroforestales proporcionan una riqueza de especies diferenciada con propósitos específicos, pero complementaria entre sí.

Palabras clave: Cafetal; huertos familiares; milpa; Valor de Uso

Societies in the world have practiced the cultivation of arboreal species in agricultural spaces in close relation to the main purpose of food production (Steppler & Nair 1987, Nair 2011). In tropical America, farmers have traditionally simulated forest conditions in their crop fields, mimicking the structure of forests by planting species with different growth habits (Steppler & Nair 1987). Agroforestry systems "combine agricultural crops, tree crops, and forest plants and / or animals simultaneously or sequentially, and applies management practices that are compatible with the cultural patterns of the local population" (Bene et al. 1977). These systems are distinguished by integrating agricultural, forestry and cultural diversity (Moreno-Calles et al. 2016) and have been maintained over time to produce food, fiber, and fuel, among other essentials (Power 2010, Boafo et al. 2016), which is why they are considered the best option for food security and biodiversity conservation (Segnon et al. 2015).

Multi-strata agroforestry systems have shown that they can contribute to the conservation of tropical biodiversity when forests are maintained within the agricultural landscape (Harvey & González-Villalobos 2007). Among the main agroforestry systems are agroforests, home gardens, terraces, and shifting cultivation or slash-and-burn agricultural systems (Moreno-Calles et al. 2016); in addition, they are characterized for their plant diversity in form of polycultures and agroforestry patterns (Rosset & Altieri 2018).

In Mexico, agroforestry systems are part of a biocultural heritage (Moreno-Calles et al. 2013) where woody species in agricultural spaces are used as fruit trees, firewood, shade, ornaments, respect for nature and other environmental benefits (Vallejo et al. 2014). This cultivation system is used in the milpa in Yucatán, where the farmer selects some suitable woody species for construction, trees, fruit trees and shade (López-Forment 1998). In studies carried out in Mayan family gardens, a mosaic of stages is observed as in natural vegetation, and fulfills the function of protecting the resources of forest vegetation and the processes of the natural ecosystem of the area (De Clerck & Negreros-Castillo 2000).

Another important agroforestry system in Mexico is the traditional shaded coffee plantations produced mainly by small producers of indigenous communities and located in areas of biogeographic and ecological importance (Moguel & Toledo 1999). In the coffee plantations of the Sierra Norte de Puebla it was found that 80 % of native plants that are mainly used as medicinal and edible (Martínez et al. 2007). In the Sierra Sur of Mexico, the set of heterogeneous plantations of coffee plantations has proven valuable for the conservation of plant diversity (Bandeira et al. 2005)

At present, the conservation of areas with biodiversity is necessary, but also the satisfaction of human needs with the development of sustainable ways to use the resources that local ecosystems provide (Sarukhán et al. 2009). Traditional agroforestry systems can help maintain a higher level of biodiversity compared to practices that require greater transformation of ecosystems (Schroth et al. 2004, Bhagwat et al. 2008).

In this context, the importance of plant resources has been evaluated quantitatively through ethnobotanical indices, with use value (UV) being the most widely used indicator (Phillips & Gentry 1993 a,b, Ribeiro et al. 2014, Shaheen et al. 2015, Kunwar et al. 2016, Lopes et al. 2017). The use of plant resources is influenced by socioeconomic factors, with age, gender, schooling, language and economic activity being the most influential (Saynes-Vásquez et al. 2013, Andriamparany et al. 2014, Laleye et al. 2015, Segnon et al. 2015, Kunwar et al. 2018). In this study we define primary economic activities as those involve natural resource extraction and management, whereas tertiary activities are the providing of services.

In this study, the use value index was used to determine the importance of useful plants in three agroforestry system (home gardens, milpa and coffee plantations) in the town of Las Delicias, municipality of San Juan Juquila Vijanos, Sierra Norte. This region has great biological and cultural diversity, which is why it is recognized as part of a priority Terrestrial Region (number 130, Arriaga-Cabrera 2009) and Biocultural Region (number 17, Boege 2008), classifications that consider centers of origin, species diversification, and the presence of agroecosystems with domesticated native agrobiodiversity. Therefore, it is important to know the plant diversity in these agricultural spaces, the importance they have and how people manage them. Thus, this study aims to answer the following questions: 1) What plants of the three agroforestry systems are used in this Zapotec community, and what is the UV of these species? 2) What agroforestry system contains plants with the greatest UV? 3) What floristic similarity exists between agroforestry systems? 4) What sociodemographic factors influence the distribution of knowledge of plants in the community of Las Delicias?

Materials and methods

Study area. The locality Las Delicias is located in the communal lands of the municipality of San Juan Juquila Vijanos, Sierra Norte (Figure 1). Groups of people of Zapotec culture (INEGI 2005) settled there; therefore, the inhabitants have deep traditional knowledge about use and management of natural resources (González 2001). It occupies 62.02 km2; 77.80 % of the vegetation corresponds to forest, 20.20 % to agriculture and 2.0 % to human settlements (INEGI 2005). Because land ownership is communal (González 2001), the inhabitants can own land in any part of the municipality.

Figure 1 Location of Las Delicias, in San Juan Juquila Vijanos, Sierra Norte, Oaxaca, Mexico. 

The climate is semiwarm humid and temperate wet (INEGI 2005). Precipitation ranges from 1,200 to 2,000 mm (INEGI 2005), is common throughout the year but reaches maximum levels in summer (Pérez-García & Del Castillo 2016). Middle temperature ranges from 16 to 22 °C. The altitude ranges from 900 to 2,400 meters above sea level, The landscape is composed of riparian vegetation, pine forest, pine-oak forest, cloud montane forest, secondary vegetation and cultivated areas like milpa and coffee fields, (Del Castillo & Blanco-Macías 2007, Pérez-García & Del Castillo 2016).

Of the above, shade-grown coffee represents the majority of economic income for the local farmers (Nader 1964). The mosaic of natural vegetation with interspersed cultivated areas (Figure 2) is due to slash-and-burn systems (Pérez-García & Del Castillo 2016).

Figure 2 Vegetation surrounding the community of Las Delicias, Juquila Vijanos, Sierra Norte, Oaxaca, Mexico. 

Field work. The study was conducted from January 2016 to May 2018. We choose 30 families at random (Abdoellah et al. 2006); in 15 households, only women were interviewed, and in the other 15 households, only men were interviewed. All families had all three agroforestry systems (home gardens, coffee plantations and milpa), and each collaborator was interviewed once in each agroforestry systems. Semistructured interviews were applied to determine the useful plants in each agroforestry systems the destination (self-consumption, selling or bartering), the part used (whole plant, fruit, leaves, stem, flowers, root, seeds, and pods), the degree of management of plants (cultivated, wild, tolerated, promoted and protected) according to De Wet & Harlan (1975), and the use (food, medicinal, ornamental, live fence, firewood, shade, construction, domestic use and forage). Likewise, sociodemographic data were obtained, such as age, gender, schooling, economic activity and language (Spanish and/or Zapotec).

The ethnobotanical surveys were carried out in the three agroforestry systems of each collaborator (Albuquerque et al. 2014), in total there were ninety interviews. The plants were photographed, some identified in the field and others collected for identification and deposition in the herbarium of the Interdisciplinary Center for Regional Integrated Research and Development-National Polytechnical Institute (Centro Interdisciplinario de Investigación y Desarrollo Integral Regional- Instituto Politécnico Nacional, CIIDIR-IPN), Oaxaca.

Statistical analysis. The similarity in floristic composition among agroforestry systems was performed with the Sørensen index with paired tests: SI = (2C/A + B) × 100, where A is the number of species in community A, B is the number of species in community B, and C is the number of species in both communities (Moreno 2001, Castillo et al. 2014).

To determine the use value (UV) of the species (Phillips & Gentry 1993 a,b, La Torre-Cuadros & Islebe 2003, Thomas et al. 2009), we calculated the UV by species for each collaborator i (UVis) and then the UV for each species s (UVs). The UVis calculated as UVis = Σ Uis/nis, where Uis is the number of uses the collaborator i refers to the species s in an interview (event), and nis is the number of events for species s with collaborator i. We conducted three events per collaborator. Finally, the UV for each species was calculated as UVs = ΣUVis/ns, where ns is the number of collaborators interviewed for a given species.

The differences in the number of species for the life-form, the origin (introduced, native) and the degree of management of the species in general and among them were analyzed with the chi-square test (χ2), and in the cases where differences between groups were found, paired tests were conducted. The proportions test was used to analyze the overall and between-agroforestry systems differences in the categories of richness, destination, part used and use of the species (Conover 1999, Agresti 2002, Mendenhall et al. 2013). In the post hoc tests, Bonferroni correction was performed for both the chi-square and proportional tests (Agresti & Finlay 2009). These tests were performed with the R statistical environment (R Core Team 2016).

The UV data of the species of the agroforestry systems were analyzed in the program InfoStat (Di Rienzo et al. 2008). Due to the nature of the data, the nonparametric Kruskal-Wallis test (Mendenhall et al. 2013) was used to evaluate whether the differences in the UV between agroforestry systems are statistically significant. From this, a post hoc analysis was performed to determine between which pairs of agroforestry systems the difference resided (Conover 1999).

The sociodemographic factors related to the traditional knowledge of plants used were evaluated with a generalized linear analysis with a Poisson distribution and log link function (McCullagh & Nelder 1983) in the program IBM SPSS v.26 (IBM 2019). And the sum of squares (SS) Type III is used because Type III SS adjusts the sums of squares to estimate what they might be if the design were truly balanced (Hershberger 2005). The number of known species was used as a quantitative measure of traditional knowledge (Souto & Ticktin 2012, Beltrán-Rodríguez et al. 2014).

Results

Home gardens are located in the front and back of houses. Each family establishes the arrangement based on the available space and its needs; therefore, there is no distribution pattern. The farmers delimit the spaces with vegetables with mesh to protect them from breeding animals (hens and sheep), which they call ‘cercos’ (fences). Home gardens are mostly managed by women, who decide which species to introduce to the gardens, particularly ornamental and edible species. The men perform activities such as weeding, clearing of land for planting and irrigation.

Coffee cultivation is one of the main economic activities for the inhabitants. Each family has at least one parcel for coffee and can use it for commerce or self-consumption during that year. Coffee plantations are planted in areas with secondary vegetation and accompanied by various crops. In some cases, they are sown between pine forests (Pinus chiapensis), where these trees provide the main shade to the crop.

The milpa system is usually conducted along terraces. Farmers plant four types of maize based on their color: white, red, black and yellow. There are two types of milpa according to altitude: cold (tierra fría) and hot (tierra caliente) lands (yu ziág and yu tza'a, respectively), which determine the type of management given to these systems. In cold lands, the slash-and-burn system is used. These lands generally consist of permanent agriculture, in which ornamental or shade trees are maintained along the edges of the land. In hot lands, oxen are used to stir-up the earth, and the planting spaces are intermittent. According to the inhabitants, there is a greater richness of useful plants in cold zones.

Richness of species in agroforestry systems. The total richness of useful species in these spaces was 211 species and 32 varieties, distributed in 80 botanical families and 176 genera (Supplementary data 1). Asteraceae, Fabaceaeae, Solanaceae and Cucurbitaceae were the families with the greatest number of species in the three agroforestry systems. A large variety of beans (Phaseolus), squash (Cucurbita), chayote (Sechium), bananas (Musa) and chilis (Capsicum) were recorded. The resources are used for home-consumption, in some cases for sale and to a lesser extent bartering.

Home gardens showed the greatest species richness, followed by coffee plantations and milpa (Figure 3 and Figure 10). Relevant aspects were detected in the diversity of species in each agroforestry system (Table 1).

Table 1 Relevant aspects of the diversity of plant species in the agroforestry systems of Las Delicias, Oaxaca 

Agroforestry systems Diversity
Home garden Characterized by ornamental plants such as roses (Rosa) and lilies (Lilium) and plants used in the diet: ‘cebollina’ white garlic (Allium neapolitanum), epazote (Dysphania ambrosoides), coriander (Coriandum sativum), chilis (Capsicum spp.), guava (Psidium guajava), peach (Prunus pérsica) and citrus. There is also a significant presence of epiphytes, some in the risk categories of the NOM-059-SEMARNAT-2010 of the SEMARNAT (Secretary of Environment and Natural Resources): orchid (Prosthechea vitellina), which is subject to special protection, and one bromeliad (Tillandsia imperialis) that is considered threatened.
   
Coffee plantation The diversity associated with coffee plantations is mainly made up of trees that serve as shade for the main crop. Among the main species are ‘yavito’ (Liquidambar straciflua), ‘palo de águila’ (Alnus acuminata), ‘yedou’ (Clethra mexicana) and ‘guajinicuil’ (Inga jinicuil). When clearing land, some medicinal species such as arnica (Tithonia diversifolia), ‘huele de noche’ (Cestrum nocturnum) and ‘gordolobo’ (Pseudognaphalium viscosum) remain. They also harbor one pine (Pinus chiapensis) subject to special protection and one threatened species of palm ‘tepejilote’ (Chamaedora oreophila) according to NOM-059-SEMARNAT-2010.
   
Milpa Because it is a seasonal system, milpa mainly host herbaceous plants. The main crop of maize (Zea mays) is associated with varieties of squash (Cucurbita spp.) and bean (Phaseolus spp.), in addition to wild ‘quelites’ potherbs such as the quelite de piojito (Galinsoga parviflora) and the ‘cuan bech’ (Phytolaca icosandra). However, in cold land crops, trees remain, either for their edible fruits, such as mango (Mangifera indica), or for their ornamental value and shade, such as the xóchitl or yaj zá'a (Magnolia macrophylla var. dealbata (Zucc.) D. L. Johnson.).

Figure 3 Richness of useful species in agroforestry systems. 

The proportions test showed significant differences in the richness of useful species among the three agroforestry systems (χ2 (2,211) = 162.71, p < 0.001), with the richness of the home gardens and coffee plantations significantly different from that of the milpa (Supplementary data 2).

The tests also showed that self-consumption is the main destination of plant species (χ2 (2,211) = 492.11, p < 0.001), followed by their sale (Figure 4), mainly vegetables such as ‘cebollina’ (Allium neapolitanum), peas (Pisum sativum) and fava beans. Species that the inhabitants mentioned they used for bartering were beans (Phaseolus spp.), and squash seeds (Cucurbita spp.).

Figure 4 Destination of plant species from agroforestry systems. 

In agroforestry systems in general, there is a greater amount of native plants than introduced plants (χ2 (1,211) = 7.20, p = 0.001). When comparing agroforestry systems, a statistically significant difference was observed (χ2 (2,211) = 45.51, p <0.001), where the highest percentage of introduced species was detected in home gardens due to ornamental species brought from the city. In contrast, coffee plantations and milpa presented higher percentages of native species (Figure 5).

Figure 5 Origin of species from agroforestry systems. 

The life-forms in the three agroforestry systems were herbaceous, trees, shrubs, climbing, epiphytes and ferns (Figure 6). The proportions test (χ2 (2,119) = 63.21, p < 0.001) showed that the herbaceous plants are found in greater proportion in the three systems, the coffee plantations harbored more trees, shrubs are scarce in milpa, and the remaining categories, such as climbing, epiphyte and fern, showed no statistically significant differences among agroforestry systems (Supplementary data 2).

Figure 6 Life-form of species from agroforestry systems. 

The whole plant is used more frequently than any of its parts alone, mainly as decoration in home gardens or to provide shade (64 %) (χ2 (7,211) = 453.83, p < 0.001). The most commonly used parts of the plants were the fruit, leaves, stem, and flower, and, to a lesser extent, the seeds, pods and roots (Figure 7).

Figure 7 Part used of species from agroforestry systems. 

Cultivated plants had greater representation in these agricultural spaces (χ2 (4,211) = 314.19, p < 0.001), followed by wild plants that are used and, to a lesser extent, tolerated, promoted and protected. In the home gardens, a greater number of cultivated plants was recorded, while wild plants predominate in the coffee plantations (Figure 8).

Figure 8 Degree of management of species from agroforestry systems. 

The main function of agroforestry systems in the community is the provision of food; therefore, food use was the main categorie (χ2 (8,211) = 260.83, p < 0.001), followed by ornamental, firewood, shade, medicinal, hedgerow, construction, forage and domestic use (Table 2). Although the pattern of use of plants is similar in the three agroforestry systems, home gardens had an important component of ornamental plants while woodlands had an important component of firewood, shade and construction (Figure 9).

Table 2 Categories of uses of plant species in agroforestry systems. 

Categorie Uses of plant species
Food One of the main functions of tree, shrub and herbaceous species is the production of food in a short time, which guarantees food security, at least for one season of the year, primarily ‘quintolines’ edible greens (Amaranthus hibridus), ‘chepiles’(Crotalaria longirostrata), ‘verdolagas’ (Portulaca oleracea), chayote (Sechium), squash (Cucurbita) and fruits such as oranges, guavas, peaches and bananas.
Medicinal The medicinal use of plants is relevant, due to their rapid and economic access. Among the plants most commonly used are ‘hierbabuena’ spearmint (Mentha spicata), chamomile (Matricaria recutita), citrus leaves and arnica to relieve stomach discomfort.
Ornamental This category has a large representation in home gardens, mainly introduced species. Its main function is the decoration of houses on the outside or for vases (when the flowers are cut from species in coffee plantations or milpa). Among the most frequent are ‘agapandos’ (Agapanthus praecox), gladiolas (Gladiolus grandiflorus) and ‘alcatraces’ (Zantedeschia aethiopica).
Firewood Firewood is a traditional and accessible fuel for the rural population, and the inhabitants mainly source from the dry branches of the trees and bushes of the coffee plantations they collect from. Among some trees are the genus Inga, the yag yere trumpet tree (Cecropia obtusifolia), ‘palo rojo’ (Heliocarpus donnellsmithii) and ‘palo blanco’ (Heliocarpus appendiculatus).
Shade The trees with the greatest shade presence were the small-pod (Inga jinicuil) and the large-pod (Inga edulis). The frequency of this species is due to the strategies implemented by INMECAFE in the 1970s, in which the use of species of the genus Inga and fruit trees of the genus Citrus as a shade was promoted.
Domestic use Species with domestic use have various purposes, For example, dried leaves of sugarcane (Saccharum officinarum) are used to protect panela (unrefined whole cane sugar), bule (Lagenaria siceraria) is used to transport water or serve food or coffee, and the yaj xúba (Sida rhombhifolia) is also used to sweep the courtyards or to clean the houses.
Hedgerows Hedgerows are used to delimit, protect and create boundaries for crops and livestock, in addition to providing food, medicine, ornaments and fuel. These plants provide scenic beauty and firewood for fuel and produce edible fruits such as plantains.
Construction The species used in construction are obtained mainly from coffee crops and are also used as shading, among which are ‘yavito’ (Liquidambar straciflua), ‘palo de águila’ (Alnus acuminata), ‘guajinicuiles de vaina pequeña’ (Inga jinicuil), ‘guajinicuiles de vaina grande’ (Inga edulis), ‘gallito’ (Diphysa americana), pine (Pinus chiapensis) and oak (Quercus).
Forage Forage species are found mainly in milpa and coffee plantations. They are herbaceous plants that serve as food for cattle and chickens. Among them are grasses (Cyperus esculentus and Setaria parviflora).

Figure 9 Use of species from agroforestry systems. 

Figure 10 Agroforestry systems of Las Delicias in San Juan Juquila Vijanos, Sierra Norte, Oaxaca, Mexico. A, B) Home gardens, C, D) Coffee plantations E, F) Milpa, (Photos: S. Pascual-Mendoza, G. Manzanero-Medina). 

Similarity of floristic composition among agroforestry systems. There are 12 species shared among the three systems, all edible and the majority herbaceous (Table 3). They are generally short-cycle beans and squash.

The Sørensen index showed greater similarity between home gardens or coffee plantations in terms of the number of shared and exclusive species (Table 4).

Table 3 Species shared among the agroforestry systems of Las Delicias, Juquila Vijanos, Sierra Norte, Oaxaca. 

Family Species Common name
Amaranthaceae Amaranthus hybridus L. Quintonil, cuan yösj
Anacardiaceae Mangifera indica L. Mango, yag mango
Apiaceae Eryngium foetidum L. Cilantro de espinas, culandr yötzi
Asteraceae Galinsoga parviflora Cav. Quelite de piojito, cuan' béchi
Cucurbitaceae Cucurbita ficifolia Bouché. Chilacayota, yutu uech
Cucurbitaceae Cucurbita maxima Duchesne Tamala, yutu chuga
Fabaceae Phaseolus coccineus L. Frijol grandote, za dupi
Fabaceae Phaseolus sp. Frijol de enredadera de milpa, za ya'a
Fabaceae Phaseolus sp. Frijol de cuarentena, za chua
Poaceae Zea mays L. Maíz, yöl
Solanaceae Capsicum pubescens Ruiz & Pav. Chile marongo, guina'marongo
Solanaceae Cestrum nocturnum L. Huele de noche, cuan xu'u

Table 4 Floristic similarity among the agroforestry systems home gardens, coffee plantations and milpa. 

Sites A-B Sites A-C Sites B-C
Sites Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa
Sørensen index 50.81 23.00 23.28

A total of 69 exclusive species were recorded in home gardens, mainly ornamental and food plants. In coffee plantations, 61 exclusive species were recorded, mostly trees used as shade and wild species used for food or medicinal purposes. The milpa system presented 10 exclusive species, mostly herbaceous species, such as ‘quelites’, and forage for cattle.

UV of plants in agroforestry systems. The species with the highest UV are trees. For example, the flowers of ‘gallito’ (Diphysa americana) are used as food (cooked with salt or fried with eggs). This tree can also be used as a hedgerow to delimit areas of cultivation and provide shade for coffee plantations, and the stem is used as firewood or for the construction of houses (Table 5). Species with lower UVs are those with more specific uses, such as medicinal plants.

Table 5 Species with the highest use value. AGS: Agroforestry systems: HG-Home Garden, C-Coffee plantation, M-Milpa. Uses: Ed-Edible, FW-Firewood, Sha-Shade, HR-Hedgerow, Med-Medicinal, Con-Construction, Orn-Ornamental. UV: Use Value Index. 

Kindred Common name Name in Zapotec AGS Uses UV
Diphysa americana (Mill.) M. Sousa. Gallito Ye'yecho C Ed, FW Sha, HR, Con 3.18
Prunus persica (L.) Batsch. Durazno Traz HG, C Ed, Med, FW, Sha, HR 3.05
Psidium guajava L. Guayaba Uyaj HG, C Ed, Med, FW, Sha 2.52
Persea schiedeana Nees. Aguacate chupón Xudu dxi C Ed, Med 2.11
Mangifera indica L. Mango Yag mango HG, C, M Ed, FW, Sha, Con 2.00
Alnus acuminata Kunth. Palo de águila Yag i'uiöl C FW, Sha, HR, Con 1.98
Erythrina americana Mill. Zompancle, colorín Cuan btu tzu HG, C Ed, FW, Sha, HR 1.96
Citrus medica L. Lima Guiy xi'x HG, C Ed, FW, Sha, Con 1.93
Manilkara chicle (Pittier) Gilly. Zapote Lau gasi Lau qul C Ed, FW, Sha, Con 1.92
Inga jinicuil Schltdl. Guajinicuil Yag yaj'tul HG, C Ed, FW, Sha, Con 1.91
Cestrum nocturnum L. Huele de noche Cuan xu'u HG, C, M Ed, Med, Orn, HR 1.90
Inga edulis Mart. Guajinicuil sombra Yag yaj'tul guixi' C Ed, FW, Sha, Con 1.88

The Kruskal-Wallis test indicated that there are differences between agroforestry systems regarding the UV of species. In the post hoc test, coffee plantations exhibited the highest UV (Table 6) with many uses. Home gardens and milpa presented species with more specific purposes, such as ornamental or food purposes.

Table 6 Kruskal-Wallis test for use value among Agroforestry systems, as well as the post hoc analyses. 

Variable Agroforestry systems N Mean St. Dev Median H P
UV Coffee plantations 138 1.78 0.87 1.36 11.98 < 0.001
UV Home gardens 147 1.57 0.84 1.00
UV Milpa 38 1.26 0.72 1.00
Systems Range
Milpa 123.22 A
Home garden 155.73 A
Coffee plantation 179.35 B

Means with common letters are not significantly different (p > 0.05).

Sociodemographic factors and traditional knowledge. The data obtained from the interviews are summarized in Table 7 where the factors Gender, age and economic activity are shown. The results of the generalized linear model showed that gender (χ2 (1,30) = 12.258, p < 0.0001), and economic activity (χ2 (1,30) = 7.263, p = 0.007), significantly influence the distribution of knowledge within the community. It was also observed that only the interactions between gender and schooling (Gender × Schooling) and between Economic Activity and Age (Economic activity × Age), were statistically significant with values of χ2 (1.30) = 8.953, p = 0.003 and χ2 (1.30) = 7.463, p = 0.006. (Table 8).

Table 7 Mentioned plant species and sociodemographic data (gender, age and economic activity). 

Gender Age Economic activity Number of species mentioned
Minimum Maximun Mean Standard error
Women 55.57 Primary 72 133 95.42 9.466
42.13 Tertiary 65 109 83.87 5.745
Men 59.73 Primary 62 103 78.45 3.47
35.25 Tertiary 63 98 88.25 8.439

Table 8 Influence of sociodemographic factors on the distribution of traditional knowledge in the community. 

Source Wald Chi-squared df Sig.
Intersecction 614.925 1 < 0.0001
Gender 12.258 1 < 0.0001
Economic activity 7.263 1 0.007
Age 1.684 1 0.194
Language 0.128 1 0.868
Schooling 0.506 1 0.477
Gender × Economic activity 0.014 1 0.906
Gender × Schooling 8.953 1 0.003
Economic activity × Age 7.463 1 0.006

Sum of squared Type III.

Discussion

Traditional knowledge of plants in agroforestry systems. In the Las Delicias Zapotec community, families have different agroforestry systems. In these, 85 % of Zapotec names were recorded for different plant species, which is higher in comparison to other Zapotec communities in the Sierra Madre del Sur, where up to 67 % of names in Zapotec have been recorded (Luna-José & Rendón-Aguilar 2012). This reflects the degree of conservation and use of the indigenous language in the community. For example, squash is called yutu, but there are specific names that describe particular physical characteristics: yutu uech means thin squash and is also known as ‘chilacayota’ (Cucurbita ficifolia); yutu chuga means squash with solid-looking skin (Cucurbita maxima); yutu bela describes fleshy squash whose skin is thin (Cucurbita pepo); and yutu nicachi alludes to the long form of squash (Cucurbita argyrosperma). This classification is similar to that reported in the chinantec milpa of Oaxaca, where the determinant characteristics of four variants of squash were hardness of the skin and shape of the fruit (Mateos-Maces et al. 2016).

Home gardens, coffee plantations and milpa are the main agroforestry systems in this Zapotec community and provide food, supplement the economic income of families and have an important role in bartering among the inhabitants. They also represent a strategy of adaptation to the environment because they show multiple management strategies for domesticated and wild resources, thus fulfilling a conservationist, resilient and sustainable function (Altieri & Toledo 2011). In this sense, the agroecological management practiced by farmers in the communities is fundamental for food sovereignty, which is why it has been recognized as an alternative and sustainable agriculture (Sámano-Rentería 2013).

Among the different types of agroforestry sytems, Mexico recognizes that home gardens are the most important for farmers because of their role in obtaining food (Boege 2008), while coffee plantations are the most important in terms of conservation, such as Chinantec coffee plantations (Bandeira et al. 2005) and those of Veracruz (Cerdán et al. 2012) and Chiapas (Valencia et al. 2014). In the Las Delicias community, coffee plantations play an important role in the economic activities of families because coffee cultivation represents an important subsistence strategy, which has been observed in other regions of Mexico, such as Los Tuxtlas in Chiapas (Castillo et al. 2014), and in other countries, such as El Salvador (Olson et al. 2012) and Puerto Rico (Borkhataria et al. 2012).

Particularly for milpa, the peasants of Las Delicias classify the land according to altitude and climate, in which the ‘tierra fría’ (cold land) is found at higher elevations with pine, oak and cloud forest and the ‘tierra caliente’ (hot land) is found at lower elevations. This classification is also used in other communities, such as the Zapotec and Chinantec in Oaxaca and Purépecha from Michoacan, whose classification of the territory is related to the productive cycle and soil quality (Mateos-Maces et al. 2016, Pérez-García & Del Castillo 2016, Pulido & Bocco 2016). As well as that of the ekuaro system in the same region (Franco-Gaona et al. 2016). It should be emphasized that the classification of the agroecosystem milpa of Las Delicias is very similar to that of the communities of Coyomeapan in the state of Puebla, and San Lorenzo Pápalo and Santa María Ixcatlán in the state of Oaxaca, which are inhabited by Nahuatl, Cuicatecos and ixcatecos, respectively, where this system is classified as highland cultivation of the region where the vegetation includes different types of association of pine, oak and pine-oak, and lowland commonly combining corn, beans and pumpkins with other crops (Vallejo et al. 2014)

Diversity of species in agroforestry systems. Species richness in Las Delicias home gardens is high (159) compared to that reported in other Mexican communities (García-Flores et al. 2019), in other countries such as Perú (Coomes & Ban 2004) and Argentina (Eyssartier et al. 2011), and in Asia (Mekonen et al. 2015). The majority of species in home gardens are selected by the owners for their reproduction and availability throughout the year (Manzanero-Medina et al. 2009). Despite the high species richness in this agroforestry, a little more than half (53 %) corresponds to introduced plants, which has been observed in other Zapotec home gardens (Gómez-Luna et al. 2017).

The number of useful species found in coffee plantations (148) is also considered high because it is higher than that reported for an Otomí community in Hidalgo (Acosta-Tolentino 2009). Although the most frequent life-form in the three agroforestry systems is herbaceous plants, the presence of trees was higher in coffee plantations. The abundance of trees in coffee plantations has also been reported in the Sierra Norte de Puebla and La Chinantla in Oaxaca, where they are used for food, medicine, firewood and construction wood (Martínez et al. 2007, Bandeira et al. 2005). Unlike home gardens, coffee plantations conserve a considerable number of wild species, which demonstrates the importance of this agroforestry system in the conservation and use of native biodiversity (Valencia et al. 2014).

For milpa, the number of species (41) was also high compared to a Chinantec village in the state of Oaxaca, where 26 species were recorded (Mateos-Maces et al. 2016).

The floristic composition of coffee plantations and milpa is approximately 70 % native plants, a characteristic that they share with this type of agroforestry system in countries such as Brazil (Souza et al. 2012) and Puerto Rico (Borkhataria et al. 2012). Based on the above, it can be suggested that the agrobiodiversity associated with agroforestry systems in the Las Delicias community is high, which is due to planting various crops for food, ornamental, and medicinal purposes, among others (Thrupp 2004).

Similarity of floristic composition among agroforestry systems. The 12 plant species that are present in the three agroforestry systems were mostly herbaceous, and the presence of those used as food, such as maize, beans and chili, is noteworthy. This not only demonstrates that these species are key components of agrobiodiversity in this community but also reflects their importance in the diet of Mexicans (Mateos-Maces et al. 2016, Salazar et al. 2016). Our results indicate that the agroforestry systems of this Zapotec community follow strategies based on the management of biodiversity. In this context, Olson et al. (2012) highlight the importance of agricultural matrices for the subsistence of farmers and the maintenance of different species. Thus, in the Las Delicias community, edible and ornamental plants are obtained from home gardens, trees for firewood and construction are obtained from coffee plantations, and basic food resources such as maize, beans and squash are obtained from milpa.

Use value of plants in agroforestry systems. Plants with higher UVs are found in coffee plantations and correspond to species with more than three categories of use, mainly plants for which the same part is used in different ways. In this regard, in the coffee plantations, a greater presence of trees was reported, for which different uses such as wood, fuel and construction were recorded. This variety of uses has been recorded in other studies, in which a high UV has been reported for woody plants (Lucena et al. 2007, Kwetche et al. 2012). Additionally, the presence of trees of different species in Las Delicias, mainly fruit and timber species, contributes to the highest UVs in this type of agroforestry system compared to home gardens and milpa (Acosta-Tolentino 2009).

Notably, quantitative approaches, such as those performed in this study, allow us to know the statistical support of the close relationship between the ecological aspect and the UV of plants (Tomazini et al. 2016). Thus, the UV not only allows the identification of the most well-known and utilized species in a community but also quantifies the traditional knowledge (Amusa et al.2012, Lucena et al. 2013).

Sociodemographic factors and traditional knowledge. In the Las Delicias community, gender and economic activity were the factors that had the greatest effect on the distribution of traditional knowledge that people possess in relation to plants. Manzanero-Medina et al. (2009) and Vásquez-Dávila & Manzanero-Medina (2015) note that activities in home gardens are carried out mainly by women. They decide which plants will be incorporated into the garden and know the edible plants used in cooking, such as condiments and vegetables, as well as those used in home medicine. Similarly, in the Zapotec families of the Isthmus and Sierra Sur, women have greater influence on decisions regarding agricultural spaces for food and economic purposes, while the rest of the family members participate to a lesser degree in the care and maintenance of agroecosystems (Velasco-Morales et al. 2001, Zurita-Vásquez 2012et al. 2019).

However, economic activity was significantly associated with the number of plants mentioned. In the Las Delicias community, people with an economic activity other than field activities (e.g. masonry, merchants or teachers) were those who mentioned fewer plants, while those who carried out agricultural and gathering activities in forests or agroecosystems showed greater traditional knowledge about the use of plants and the management of ecosystems. This shows that occupational activities other than agricultural activities are negatively related to ethnobotanical knowledge, which has also been reported for the Zapotecs of the Isthmus of Tehuantepec (Saynes-Vásquez et al. 2013). Thus, we can suggest that the existence and permanence of agroforestry systems are directly related to traditional knowledge.

On the other hand, the interaction between gender and schooling could be interpreted as that schooling is not the same between genders. In this regard it was observed that among men there is a smaller number of people who attended primary school while in women the pattern is reversed; although among the women, none attended the baccalaureate. In the interaction between economic activity and age, it would indicate that in primary economic activity we find a greater number of people over the age of fifty, while in tertiary activity this pattern is reversed.

In addition to the benefits provided by agroforestry systems in the Las Delicias community (for example, food, medicine, and firewood, among others), they also contribute to the conservation of the associated diversity because people perform “ex situ” conservation of species that are brought from the forest or “in situ” conservation of native, tolerant or promoted species as well as varieties of squash, chilis, beans and plantains. Even when the UV results reflect the degree of use of many plant species, this does not compromise the availability or permanence of their populations, as these are highly abundant species with a wide distribution, which is why they are not listed in any risk category (Lucena et al. 2007, Amusa et al. 2012).

Finally, agroforestry systems play an important role in the economic activities of the community and in the conservation of biodiversity. However, as communities begin to participate in the global market economy, their system of resource management tends to change, which in turn causes the loss of biodiversity in these systems (Vásquez-Dávila & Lope-Alzina 2012). Therefore, the need to incorporate traditional knowledge of indigenous communities into public policies is evident, as they are the basis for guaranteeing food sovereignty and biodiversity conservation.

Supplemental data

Supplemental material for this article can be accessed here: https://doi.org/10.17129/botsci.2423

Aknowledgments

To the families of the community of Las Delicias, Juquila Vijanos for allowing us to work with them, giving us the time to do the tours and interviews. A special thanks to the citizen Noé Pascual Yescas who collaborated with the translation and writing of the names in Zapotec. We thank Dr. Alejandro Flores-Manzanero for the revision of the manuscript and his valuable comments, to Masters Eder Ortiz Martínez and Mario Lavariega for their valuable support in formatting figures and images and mapping respectively. SPM thanks the CONACYT for the 8987298 scholarship granted to carry out the Master's studies and the Project “Ethnobotany and nutritional potential of quelites present in the markets of Zaachila and Zimatlán, Oaxaca” key: SIP20170715. GIMM thanks the scholarships of the COFAA and EDI of IPN.

Literature cited

Abdoellah OS, Hadikusumah HY, Takeuchi K, Okubo S, Parikesit. 2006. Commercialization of homegardens in an Indonesian village: vegetation composition and functional changes. Agroforestry Systems 68: 1-13. DOI: https://doi.org/10.1007/s10457-005-7475-x [ Links ]

Acosta-Tolentino A. 2009. Estudio Florístico y etnobotánico de milpas y cafetales en San Antonio el Grande (Huehuetla, Hidalgo) y su relación con algunos factores socioeconómicos. BSc. Thesis, Universidad Autónoma del Estado de Hidalgo. [ Links ]

Agresti A, Finlay B. 2009. Statistical Methods for the Social Sciences. New Jersey: Pearson Prentice Hall. ISBN-10: 013450710X [ Links ]

Agresti A. 2002. Categorical Data Analysis. New Jersey: John Wiley and Sons, Inc. ISBN 978-0-471-22618-5 [ Links ]

Albuquerque UP, da Cunha LVFC, de Lucena RFP, Alves RRN. 2014. Methods and Techniques in Ethnobiology and Ethnoecology. New York: Springer. DOI: https://doi.org/10.1007/978-1-4614-8636-7; ISBN-13: 978-1461486350 [ Links ]

Altieri M, Toledo VM. 2011. The agroecological revolution of Latin America: rescuing nature, securing food sovereignity and empowering peasants. The Journal of Peasant Studies 38: 587-612. DOI: https://doi.org/10.1080/03066150.2011.582947 [ Links ]

Amusa TO, Jimoh SO, Azeez IO. 2012. Determining the local importance of non-timber forest products using two different prioritization techniques. International Journal of Africulture and Forestry 2: 84-92. DOI: https://doi.org/10.5923/j.ijaf.20120201.14 [ Links ]

Andriamparany JN, Brinkmann K, Jeannoda V, Buerket A. 2014. Effects of socio-economic household characteristics on traditional knowledge and usage of wild yams and medicinal plants in the Mahafaly region of south-western Madagascar. Journal of Ethnobiology and Ethnomedicine 10: 82. DOI: https://doi.org/10.1186/1746-4269-10-82 [ Links ]

Arriaga-Cabrera L. 2009. Regiones prioritarias y planeación para la conservación de la biodiversidad. In: CONABIO, ed. Capital Natural de México, vol. II : Estado de Conservación y Tendencias de Cambio. México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, pp. 433-457. ISBN: 978-607-7607-08-3 [ Links ]

Bandeira FP, Martorell C, Meave J, Caballero J. 2005. The role of rustic coffee plantations in the conservation of wild tree diversity in the Chinantec region of Mexico. Biodiversity and Conservation 14: 1225-1240. DOI: https://doi.org/10.1007/s10531-004-7843-2 [ Links ]

Bene JG, Beall HW, Côté A. 1977. Trees, food and people: land management in the tropics. Canada, Ottawa: International Development Research Centre. ISBN 10: 0-88936-121-5; ISBN-13: 978-0889361218 [ Links ]

Beltrán-Rodríguez L, Ortiz-Sánchez A, Mariano NA, Maldonado-Almanza B, Reyes-García V. 2014. Factors affecting ethnobotanical knowledge in a mestizo community of the Sierra de Huautla Biosphere Reserve, Mexico. Journal of Ethnobiology and Ethnomedicine 10: 14. DOI: https://doi.org/10.1186/1746-4269-10-14 [ Links ]

Bhagwat SA, Willis KJ, Birks JB, Whittaker RJ. 2008. Agroforestry: a refuge for tropical biodiversity?. Trends in Ecology and Evolution 23: 261-267. DOI: https://doi.org/10.1016/j.tree.2008.01.005 [ Links ]

Boafo YA, Saito O, Kato S, Kamiyama C, Tkeuchi K, Nakahara M. 2016. The role of traditional ecological knowledge in ecosystem services management: the case of four rural communities in Northern Ghana. International Journal of Biodiversity Science, Ecosystem Services and Management 12: 24-38. DOI: https://doi.org/10.1080/21513732.2015.1124454 [ Links ]

Boege SE. 2008. El patrimonio biocultural de los pueblos indígenas de México. Hacia la conservación in situ de la biodiversidad y agrodiversidad en los territorios indígenas. México, DF: Instituto Nacional de Antropología e Historia, Comisión Nacional para el Desarrollo de los Pueblos Indígenas. ISBN: 978-968-03-0385-4 [ Links ]

Borkhataria R, Collazo J, Groom MJ, Jordan-García A. 2012. Shade-grown coffee in Puerto Rico: Opportunities to preserve biodiversity while reinvigorating a struggling agricultural commodity. Agriculture, Ecosystems and Enviroment 149: 164-170. DOI: https://doi.org/10.1016/j.agee.2010.12.023 [ Links ]

Castillo CG, Ávila-Bello CH, López-Mata L, León GF. 2014. Structure and tree diversity in traditional popoluca coffee agroecosystems in the Los Tuxtlas biosphere reserve, Mexico. Interciencia 39: 608-619. [ Links ]

Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL. 2012. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agricultural Systems 110: 119-130. DOI: https://doi.org/10.1016/j.agsy.2012.03.014 [ Links ]

Conover WJ. 1999. Practical Nonparametric Statistics. New York: John Wiley and Sons, Inc. ISBN-10: 0471160687; ISBN-13: 978-0471160687 [ Links ]

Coomes OT, Ban N. 2004. Cultivated plant species diversity in home gardens of an Amazonian peasant village in Northeastern Perú. Economic Botany 58: 420-434. DOI: https://doi.org/10.1663/0013-0001(2004)058[0420:CPSDIH]2.0.CO;2 [ Links ]

De Clerck FAJ, Negreros-Castillo P. 2000. Plants species of traditional Mayan home gardens of Mexico as analogs for multistrata agroforests. Agroforestry Systems 48: 303-317. DOI: https://doi.org/10.1023/A:1006322612362 [ Links ]

Del Castillo RF, Blanco-Macías A. 2007. Secondary succession under slash and burn regime in a tropical montane cloud forest: soil and vegetation characteristics. In: Newton AC, ed. Biodiversity Loss and Conservation in Fragmented Forest Landscapes: Evidence from the Forests of Montane Mexico and Temperate South America. Wallingford, UK: CAB International, pp. 158-180. DOI: https://doi.org/10.1079/9781845932619.0158 [ Links ]

De Wet JMJ, Harlan JR. 1975. Weeds and domesticates: evolution in the man-made habitat. Economic Botany 29: 99-107. DOI: https://doi.org/10.1007/BF02863309 [ Links ]

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. 2008. InfoStat v 2008. < http://www.infostat.com.ar/ > (accessed October 18, 2018). [ Links ]

Eyssartier C, Ladio A, Lozada M. 2011. Traditional horticultural knowledge change in a rural population of the Patagonian steppe. Journal of Arid Enviroments 75: 78-86. DOI: https://doi.org/10.1016/j.jaridenv.2010.09.006 [ Links ]

Franco-Gaona A, Ramírez-Valverde B, Cruz-León A, Sangerman-Jarquín DM, Ramírez-Valverde G. 2016. El ekuaro: un sistema agroforestal tradicional michoacano. Revista Mexicana de Ciencias Agrícolas 16: 3357-3370. DOI: https://doi.org/10.29312/remexca.v0i16.401 [ Links ]

García-Flores JC, Gutiérrez-Cedillo JG, Araújo-Santana MR. 2019. Factores sociales explicativos de la riqueza vegetal en huertos familiares: análisis de una estrategia de vida. Sociedad y Ambiente 19: 242-264. DOI: https://doi.org/10.31840/sya.v0i19.1931 [ Links ]

Gómez-Luna RE, Manzanero-Medina GI, Vásquez-Dávila MA. 2017. Florística y aspectos sociales de huertas zapotecas en Lachatao, Sierra Norte de Oaxaca, México. Revista Bio Ciencias 4:1-15. DOI: https://doi.org/10.15741/revbio.04.04.03 [ Links ]

González RJ. 2001. Zapotec Science: Farming and Food in the Northern Sierra of Oaxaca. Texas: University of Texas Press. ISBN-13:978-0292728325 [ Links ]

Harvey CA, González-Villalobos JA. 2007. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiversity and Conservation 16: 2257-2292. DOI: https://doi.org/10.1007/s10531-007-9194-2 [ Links ]

Hershberger SL. 2005. Type I, Type II and Type III Sums of Squares. In: Everitt BS. & Howell DC, eds. Encyclopedia of Statistics in Behavioral Science. Chichester: John Wiley & Sons. ISBN-10 0-470-86080-4; ISBN-13: 978-0470860809 [ Links ]

IBM. 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp. [ Links ]

INEGI [Instituto Nacional de Estadística y Geografía]. 2005. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. San Juan Juquila Vijanos, Oaxaca. Clave geoestadística 202001. México: INEGI. [ Links ]

Kunwar RM, Baral K, Paudel P, Acharya RP, Thapa-Magar KB, Cameron M, Bussmann RW. 2016. Land-Use and Socioeconomic Change, Medicinal Plant Selection and Biodiversity Resilience in Far Western Nepal. PLOS ONE 11: e0169447. DOI: https://doi.org/10.1371/journal.pone.0167812 [ Links ]

Kunwar RM, Fadiman M, Cameron M, Bussmann RW, Thapa-Magar KB, Rimal B, Sapkota P. 2018. Cross-cultural comparison of plant use knowledge in Baitadi and Darchula districts, Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine 14: 40. DOI: https://doi.org/10.1186/s13002-018-0242-7 [ Links ]

Kwetche T, Oldeland J, Bognounou F, Schmiedel U, Thiombiano A. 2012. Ethnobotanical knowledge and valuation of woody plants species: a comparative analysis of three ethnic groups from the sub-Sahel of Burkina Faso. Enviroment, Development and Sustainability 14: 627-649. DOI: https://doi.org/10.1007/s10668-012-9345-9 [ Links ]

Laleye FOA, Mensah S, Assogbadjo AE, Ahissou H. 2015. Diversity, Knowledge, and Use of Plants in Traditional Treatment of Diabetes in the Republic of Benin. Ethnobotany Research and Applications 14: 231-257. DOI: https://doi.org/10.17348/era.14.0.231-257 [ Links ]

Lopes LCM, Crepaldi MOS, Lobão AQ. 2017. Useful woody species and its environmental availability: the case of artisanal fishermen in Itaúnas, Brazil. Acta Scientiarum 39: 227-234. DOI: https://doi.org/10.4025/actascibiolsci.v39i2.33187 [ Links ]

López-Forment IS. 1998. Changes in Diversity in the Process of Milpa Intensification in the Henequen Zone in Yucatan, Mexico. Chicago, USA: Latin American Studies Association. [ Links ]

Lucena RFP, Aráujo EL, Albuquerque UP. 2007. Does the local availability of Woody Caatinga plants (Northeastern Brazil) Explain their Use Value. Economic Botany 61: 347-361. [ Links ]

Lucena RFP, Lucena CM, Aráujo EL, Alves AGC, Albuquerque UP. 2013. Conservation priorities of useful plants from different techniques of collection and analysis of ethnobotanical data. Anais Da Academia Brasileira de Ciencias 85: 169-186. DOI: https://doi.org/10.1590/S0001-37652013005000013 [ Links ]

Luna-José AL, Rendón-Aguilar B. 2012. Traditional knowledge among Zapotecs of Sierra Madre Del Sur, Oaxaca. Does it represent a base for plant resources management and conservation?. Journal of Ethnobiology and Ethnomedicine 8: 24. DOI: https://doi.org/10.1186/1746-4269-8-24 [ Links ]

Manzanero-Medina GI, Flores-Martínez AF, Hunn ES. 2009. Los huertos familiares zapotecos de San Miguel Talea de Castro, Sierra Norte de Oaxaca, México. Etnobiología 7: 9-29. [ Links ]

Martínez MA, Evangelista V, Basurto F, Mendoza M, Cruz-Rivas A. 2007. Flora útil de los cafetales en la Sierra Norte de Puebla, México. Revista Mexicana de Biodiversidad 78: 15-40. DOI: http://dx.doi.org/10.22201/ib.20078706e.2007.001.457 [ Links ]

Mateos-Maces L, Castillo-González F, Chávez-Servia JL, Estrada-Gómez JA, Livera-Muñoz M. 2016. Manejo y aprovechamiento de la agrobiodiversidad en el sistema milpa del sureste de México. Acta Agronómica 65: 413-421. DOI: https://doi.org/10.15446/acag.v65n4.50984 [ Links ]

McCullagh P, Nelder JA. 1983. Generalized Linear Models. London: Chapman & Hall. ISBN 978-0-412-23850-5; ISBN 978-1-4899-3244-0 [ Links ]

Mekonen T, Giday M, Kelbessa E. 2015. Ethnobotanical study of homegarden plants in Sebeta-Awas District of the Oromia Region of Ethiopia to assess use species diversity and management practices. Journal of Ethnobiology and Ethnomedicine 11: 64. DOI: https://doi.org/10.1186/s13002-015-0049-8 [ Links ]

Mendenhall W, Beaver RJ, Beaver B. 2013. Introduction to Probability and Statistics. Boston: Brooks/Cole. ISBN-10: 1133103758; ISBN-13: 978-1133103752 [ Links ]

Moguel P, Toledo VM. 1999. Biodiversity Conservation in Traditional Coffee Systems of Mexico. Conservation Biology 13: 11-21. DOI: https://doi.org/10.1046/j.1523-1739.1999.97153.x [ Links ]

Moreno CE. 2001. Métodos para medir la biodiversidad. México: M&T-Manuales y Tesis SEA. ISBN: 84-922495-2-8 [ Links ]

Moreno-Calles AI, Casas A, Toledo VM, Vallejo-Ramos M. 2016. Etnoagroforestería en México. México: Universidad Nacional Autónoma de México. ISBN 978-607-01-8641-4 [ Links ]

Moreno-Calles AI, Toledo VM, Casas A. 2013. Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Botanical Sciences 91: 375-398. DOI: https://doi.org/10.17129/botsci.419 [ Links ]

Nader L. 1964. Talea and Juquila a comparison zapotec social organization. Berkley: University of California Press. [ Links ]

Nair PKR. 2011. Agroforestry Systems and Environmental Quality: Introduction. Journal of Environmental Quality 40: 784-90. DOI: https://doi.org/10.2134/jeq2011.0076 [ Links ]

Olson MB, Morris KS, Méndez MVE. 2012. Cultivation of maize landraces by small-scale shade coffee farmers in western El Salvador. Agricultural Systems 111: 63-74. DOI: https://doi.org/10.1016/j.agsy.2012.05.005 [ Links ]

Pérez-García O, Del Castillo RF. 2016. The decline of the itinerant milpa and the maintenance of traditional agrobiodiversity: Crops and weeds coexistence in a tropical cloud forest area in Oaxaca, Mexico. Agriculture, Ecosystems and Environment 228: 30-37. DOI: https://doi.org/10.1016/j.agee.2016.05.002 [ Links ]

Phillips O, Gentry AH. 1993a. The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Economic Botany 47: 15-32. DOI: https://doi.org/10.1007/BF02862203 [ Links ]

Phillips O, Gentry AH. 1993b. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Economic Botany 47: 33-43. DOI: https://doi.org/10.1007/BF02862204 [ Links ]

Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of Royal Society 365: 2959-2971. DOI: https://doi.org/10.1098/rstb.2010.0143 [ Links ]

Pulido SJ, Bocco VG. 2016. Conocimiento tradicional del paisaje en una comunidad indígena: caso de estudio en la región purépecha, occidente de México. Investigaciones Geográficas, Boletín 89: 41-57. DOI: http://dx.doi.org/10.14350/rig.46478. [ Links ]

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed November 18, 2019) [ Links ]

Ribeiro JPO, Carvalho TKN, Ribeiro JES, Sousa RF, Lima JRF, Oliveira RS, Alvez CAB, Jardim JG, Lucena FP. 2014. Can ecological apparency explain the use of plant species in the semi-arid depression of Northeastern Brazil? Acta Botánica Brasilica 28: 476-483. DOI: https://doi.org/10.1590/0102-33062014abb2758 [ Links ]

Rosset P, Altieri M. 2018. Agroecología Ciencia y Política. Ecuador: Sociedad Científica Latinoamericana de Agroecología SOCLA. [ Links ]

Salazar C, Zizumbo-Villareal D, Colunga-GarcíaMarín P, Brush S. 2016. Contemporary Maya Food System in the Lowlands of Northern Yucatan. In: Lira R, Casas A, Blancas J, eds. Ethnobotany of Mexico. Interactions of people and Plants in Mesoamerica. New York: Springer Science and Business Media, pp. 133-150. DOI: https://doi.org/10.1007/978-1-4614-6669-7_6 [ Links ]

Sámano-Rentería MA. 2013. La agroecología como una alternativa de seguridad alimentaria para las comunidades indígenas. Revista Mexicana de Ciencias Agrícolas 4: 1251-1266. [ Links ]

Sarukhán J, Koleff P, Carabias J, Soberón J, Dirzo R, Llorente-Bousquets J, Halffter G, González R, March I, Anta S, de la Maza J. 2009. Capital Natural de México . Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad. México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad . ISBN: 978-607-7607-09-0 [ Links ]

Saynes-Vásquez A, Caballero J, Meave JA, Chiang F. 2013. Cultural change and loss of ethnoecological knowledge among the Isthmus Zapotecs of Mexico. Journal of Ethnobiology and Ethnomedicine 9: 40. DOI: https://doi.org/10.1186/1746-4269-9-40 [ Links ]

Segnon AC, Achigan-Dako EG, Gaoue OG, Ahanchéde A. 2015. Farmer’s Knowledge and Perception of Diversified Farming Systems in Sub-Humid and Semi-Arid Areas in Benin. Sustainability 7: 6573-6592. DOI: https://doi.org/10.3390/su7066573 [ Links ]

Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN. 2004. Agroforestry and Biodiversity Conservation in Tropical Landscapes. Washington, DC: Island Press. ISBN-10: 1559633565; ISBN-13: 978-1559633567 [ Links ]

Shaheen H, Qureshi R, Qaseem MF. 2015. Qualitative investigation techniques used for análisis of ethnobotanical data from Thal Desert, Punjab Pakistan. Journal of Medicinal Plants Studies 3: 69-75. [ Links ]

Souto T, Ticktin T. 2012. Understanding Interrelationships among Predictors (Age, Gender, and Origin) of Local Ecological Knowledge. Economic Botany 66: 149-164. DOI: https://doi.org/10.1007/s12231-012-9194-3 [ Links ]

Souza HN, Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, Fernandes RBA, Gomes LC, Pulleman MM. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems and Environment 146: 179-196. DOI: https://doi.org/10.1016/j.agee.2011.11.007 [ Links ]

Steppler HA, Nair PKR. 1987. Agroforestry a decade of development. Kenya, Nairobi: International Council for Research in Agroforestry. ISBN 10: 92 9059 036 X; ISBN-13: 978-9290590361 [ Links ]

Thomas E, Vandebroek I, Van Damme P. 2009. Valuation of Forests and Plant Species in Indigenous Territory and National Park Isiboro-Sécure, Bolivia. Economic Botany 63: 229-241. DOI: https://doi.org/10.1007/s12231-009-9084-5 [ Links ]

Thrupp LA. 2004. The importance of biodiversity in agroecosystems. Journal of Crop Improvement 12: 315-337. DOI: https://doi.org/10.1300/J411v12n01_03 [ Links ]

Tomazini C, Ferreira V, Shepard G, Heinrich M. 2016. Medicinal plants at Rio Jauaperi, Brazilian Amazon: Ethnobotanical survey and enviromental conservation. Journal of Ethnopharmacology 186: 111-124. DOI: https://doi.org/10.1016/j.jep.2016.03.055 [ Links ]

La Torre-Cuadros MA, Islebe G. 2003. Traditional ecological knowledge and use of vegetation in southeastern Mexico: a case study from Solferino, Quintana Roo. Biodiversity and Conservation 12: 2455-2476. DOI: https://doi.org/10.1023/A:1025861014392 [ Links ]

Valencia V, García-Barrios L, West P, Sterling EJ, Naeem S. 2014. The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agriculture, Ecosystems and Enviroment 189: 154-163. DOI: https://doi.org/10.1016/j.agee.2014.03.024 [ Links ]

Vallejo M, Casas A, Blancas J, Moreno-Calles AI, Solís L, Rangel-Landa S, Dávila P, Téllez O. 2014. Agroforestry systems in the highlands of the Tehuacán Valley, Mexico: indigenous cultures and biodiversity conservation. Agroforestry Systems 88: 125-140. DOI: https://doi.org/10.1007/s10457-013-9660-7 [ Links ]

Vásquez-Dávila MA, Lope-Alzina D. 2012. Manejo y conservación de la agrobiodiversidad y diversidad en huertos familiares indígenas de Oaxaca, México: un enfoque biocultural. In: Salvador-Flores J, ed. Los Huertos Familiares en Mesoamérica. México: Universidad Autónoma de Yucatán, pp. 280-308. ISBN: 978-607-00-6015-1. [ Links ]

Vásquez-Dávila MA, Manzanero-Medina GI. 2015. Campesinidad y socialización en las huertas familiares de las mujeres zapotecas de la sierra norte de Oaxaca, México. Negocios & Desarrollo 2: 92-117. [ Links ]

Velasco-Morales AV, Vásquez-Dávila MA, Cervantes Servín L. 2001. Género y manejo de los solares zapotecos de Tehuantepec, Oaxaca. IV Congreso Mexicano de Etnobiología . Huejutla de Reyes, Hidalgo. Memoria. Asociación Etnobiológica Mexicana. México. [ Links ]

Zurita-Vásquez GG. 2012. Estudio etnobotánico y ecológico de los huertos familiares de San Andrés Paxtlán, Miahutlán, Oaxaca. MSc. Thesis. Instituto Politécnico Nacional. Oaxaca, México. [ Links ]

Supplementary data 1.

2007-4476-bs-98-01-128-suppl1.pdf

List of plant species mentioned in the interviews. The species are ordered according to botanical families. Registration number in ascending order (No.); Species (Scientific Name); Family; Local Common name, names are in Spanish or Rincón Zapotec where indicated (Z); Agroforestry systems (AGS): H. F-Home gardens, C-Coffee plantations, M: Milpa; Use: 1-Food, 2-Medicinal, 3-Ornamental, 4-Firewood, 5-Shade, 6-Domestic use, 7-Live fence, 8-Construction, 9-Forage; VU: Use Value Index. 

No. Specie Family

  • Common name

  • Local name, names are in Spanish or Zapotec where indicated (Z)

AGS Use VU
1 Thunbergia alata Bojer ex Sims. Acanthaceae Flor amarilla, Yaj'lbá (Z) H. F 3 0.86
2 Sambucus nigra L. subsp. canadensis (L.) Bolli Adoxaceae Yag la'bziá H. F, C 3,4 1.08
3 Lampranthus spectabilis (Haw.) N.E. Br. Aizoaceae Dedo chico con flor morada H. F 3 0.67
4 Mesembryanthemum cordifolium L.f. Aizoaceae Flores pequeñas rojas, Yaj len yú (Z) H. F 3 0.67
5 Bomarea edulis (Tussac) Herb. Alstroemeriaceae Granadita, Yaj béca (Z) H. F, C 6 0.67
6 Liquidambar styraciflua L. Altingiaceae Yavito, Ye'bído (Z) C 8, 6, 5 1.55
7 Amaranthus hybridus L. Amaranthaceae Quintonil, Cuan yösj (Z) H. F, C, M 1 0.94
8 Dysphania ambrosioides (L.) Mosyakin & Clemants Amaranthaceae Epazote, Böt (Z) H. F, M 1, 2 1.24
9 Agapanthus praecox Willd. Amaryllidaceae Agapando, Yaj bech'dö (Z) H. F, C 3, 7 0.94
10 Allium neapolitanum Cirillo. Amaryllidacea Cebollina, La'yö (Z) H. F 1 0.67
11 Crinum erubescens Aiton Amaryllidaceae Yaj yöla guich (Z) H. F, C 3, 7 0.94
12 Hippeastrum reginae (L.) Herb. Amaryllidaceae Azucena roja, Ducen gach (Z) H. F 3 0.83
13 Mangifera indica L. Anacardiaceae Mango, Yag mango (Z) H. F, C, M 1, 8, 4, 5 2
14 Spondias purpurea L. Anacardiaceae Ciruela, Yá'dxi (Z) H. F 1 0.85
15 Annona cherimola Mill. Annonaceae Anona, La'gúchi (Z) C 1, 4, 5 1.53
16 Annona muricata L. Annonaceae Guanábana, La'gúchi xtil (Z) H. F, C 1, 4, 5 1.6
17 Eryngium foetidum L. Apiaceae Cilantro de espinas, Culandr yötzi (Z) H. F, C, M 1 0.87
18 Coriandrum sativum L. Apiaceae Cilantro, Culandr xtil (Z) H. F, M 1 0.86
19 Petroselinum crispum (Mill.) Fuss. Apiaceae Perejil H. F 1, 2 1
20 Nerium oleander L. Apocynaceae Rosa de China, Yaj ros (Z) H. F 3 0.94
21 Catharanthus roseus (L.) G. Don. Apocynaceae Flor morada, Yaj morado (Z) H. F 3 0.85
22 Xanthosoma robustum Schott. Araceae Palma de agua, Cuyul dit (Z) H. F, C 3 0.71
23 Zantedeschia aethiopica Spreng. Araceae Alcatraz o cartucho, Yaj cartuch (Z) H. F 3 0.67
24 Anthurium sp. Araceae Anturio H. F, C 3 0.88
25 Dieffenbachia seguine Schott Araceae Siempre verde H. F 3 0.85
26 Spathiphyllum wallisii Regel. Araceae Cuna de moisés, Yaj (Z) H. F 3 0.93
27 Monstera deliciosa Liebm. Araceae Planta de ornato, Yaj xilaba bxi'tzu (Z) H. F 3 0.85
28 Dendropanax arboreus (L.) Decne. & Planch. Araliaceae Árbol de frutos rojos, Ye'buga (Z) C 4, 7, 5 1.47
29 Chamaedorea oreophila Mart. Arecaceae Tepejilote, Yötzu (Z) C 1 0.67
30 Cordyline fruticosa (L.) A. Chev. Asparagaceae Planta de ornato H. F 3 0.71
31 Dracaena fragrans Ker Gawl. Asparagaceae Arbusto verde H. F 3 0.67
32 Polianthes tuberosa L. Asparagaceae Azucena nardo, Ducen nardo (Z) M 3 0.85
33 Yucca guatemalensis Baker Asparagaceae Flor de Izote, Yag yódj (Z) H. F, C 3,7 1
34 Artemisia absinthium L. Asteraceae Yerba maestra, Cuan'bés (Z) H. F 2 0.94
35 Ageratum corymbosum Zuccagni Asteraceae Flor esponjada morada, Yaj lugudza (Z) C 3 0.86
36 Aster amellus L. Asteraceae Flor morada H. F 3 0.67
37 Baccharis trinervis Pers. Asteraceae Hierba de flores blancas, Yaj tu'sando (Z) C 3, 7 1.19
38 Bidens odorata Cav. Asteraceae Guixi' zía (Z) C 9 0.71
39 Matricaria recutita L. Asteraceae Manzanilla H. F 2 0.9
40 Dahlia coccinea Cav. Asteraceae Dalia silvestre, Yaj dalia guixi' (Z) C 3 0.88
41 Dahlia tenuicaulis P.D. Sorensen Asteraceae Dalia silvestre, Yaj dalia guixi' (Z) C 3 0.91
42 Erechtites valerianifolius (Link ex Spreng.) DC. Asteraceae Quelite, Cuan guiti (Z) H. F, C 1 0.67
43 Galinsoga parviflora Cav. Asteraceae Quelite de piojito Cuan 'béchi (Z) H. F, C, M 1 0.91
44 Pseudognaphalium viscosum (Kunth) Anderb. Asteraceae Gordolobo C 2 0.91
45 Helianthus annuus L. Asteraceae Girasol, mirasol, Yaj uíchj xtil (Z) H. F 3 0.93
46 Xerochrysum bracteatum (Vent.) Tzvelev Asteraceae Flor doradita, Yaj uíchj (Z) H. F 3 0.85
47 Heliopsis buphthalmoides (Jacq.) Dunal Asteraceae Guixi' (Z) H. F, M 3 0.67
48 Lactuca sativa L. Asteraceae Lechuga H. F 1 0.85
49 Leucanthemum vulgare Lam. Asteraceae Margarita H. F 3 1
50 Melampodium perfoliatum (Cav.) Kunth Asteraceae Guixi' (Z) C, M 9 0.67
51 Mikania pyramidata Donn. Sm. Asteraceae Flor de hojas blancas, Yaj xi'ila (Z) C 6 0.87
52 Tanacetum parthenium (L.) Sch.Bip. Asteraceae Santa María H. F 2, 3 1.2
53 Taraxacum officinale F.H. Wigg. Asteraceae Diente de león Guixi' (Z) C 9 0.88
54 Tithonia diversifolia (Hemsl.) A. Gray. Asteraceae Árnica H. F, C 2 0.93
55 Zinnia peruviana (L.) L. Asteraceae Yaj Uzeb (Z) H. F 3 0.94
56 Impatiens walleriana Hook.f. Balsaminaceae Hierba H. F 3 0.93
57 Begonia heracleifolia Cham. & Schltdl. Begoniaceae Begonia, Yaj rla ra'yego (Z) H. F, C 3 0.85
58 Alnus acuminata Kunth. Betulaceae Palo de águila, Yag i'uiöl (Z) C 8, 4, 7, 5 1.98
59 Jacaranda mimosifolia D. Don. Bignoniaceae Jacaranda, Yag jacaránd (Z) H. F, C 3, 5 1.19
60 Brassica oleracea L. Brassicaceae Col, Col'xö (Z) H. F 1 0.86
61 Brassica rapa L. Brassicaceae Mostaza, Mor'táz (Z) H. F 1 0.67
62 Lepidium virginicum L. Brassicaceae Guixi' (Z) C 9 0.87
63 Nasturtium officinale W.T. Aiton Brassicaceae Berros, Cuan' berro (Z) C 1 0.9
64 Raphanus raphanistrum subsp. sativus (L.) Domin. Brassicaceae Rábano H. F 1 0.91
65 Ananas comosus (L.) Merr. Bromeliaceae Piña, Dúa (Z) H. F, C 1 0.94
66 Catopsis sessiliflora (Ruiz & Pav.) Mez. Bromeliaceae Bromelia, Yaj bná (Z) C 3 0.86
67 Tillandsia imperialis E. Morren ex Roezl. Bromeliaceae Bromelia, Yaj bná (Z) C 3 0.91
68 Tillandsia macdougallii L.B.Sm. Bromeliaceae Bromelia, Yaj bná (Z) H. F, C 3 0.77
69 Opuntia auberi Pfeiff. Cactaceae Nopa de lengua, Bía xtil (Z) H. F, C 1, 2 1.18
70 Opuntia ficus-indica (L.) Mill. Cactaceae Nopal delgado, Bía láz (Z) H. F, C 1, 7 1
71 Opuntia sp. Cactaceae Nopal de tortilla, Bía yöt (Z) H. F, C 1 0.76
72 Lobelia laxiflora Kunth. Campalunaceae Hierba de conejo Guidxi nidxi (Z) C 1 0.86
73 Trema micranthum (L.) Blume. Cannabaceae Palo blanco, Cuan za ye'go (Z) C 4, 7, 5 1
74 Cleoserrata speciosa (Raf.) Iltis Capparaceae Frijol del río, Cuan za yego (Z) C 2, 3 1.05
75 Carica papaya L. Caricaceae Papaya H. F, C 1 0.92
76 Clethra mexicana DC. Clethraceae Árbol de flores blancas, Yag yedau (Z) C 3, 4, 5 1.39
77 Terminalia amazonia Excell in Pulle Combretaceae Árbol, Ijérg (Z) C 4, 7, 5 1.6
78 Commelina coelestis Willd. Commelinaceae Hierba, Betzu'dú (Z) M 1 0.73
79 Ipomoea batatas (L.) Lam. Convolvulaceae Camote dulce Ula'rö'ö lila (Z) H. F, C 1 0.67
80 Ipomoea purpurea (L.) Roth Convolvulaceae Quiebra plato, Ula rö'ö (Z) H. F 3 0.76
81 Bryophyllum pinnatum (Lam.) Oken Crassulaceae Planta que truena H. F, C 3 0.67
82 Echeveria gigantea Rose & J.A. Purpus Crassulaceae Ombligo, Yaj'bía (Z) H. F 3 0.86
83 Kalanchoe blossfeldiana Poelln. Crassulaceae Planta ornato H. F 3 0.93
84 Sedum morganianum E. Walther. Crassulaceae Cola de borrego, Shbamba'bucu shila (Z) H. F 3 0.78
85 Cucurbita argyrosperma C. Huber Cucurbitaceae Calabaza alargada, Yutu nicachi (Z) H. F, M 1 0.8
86 Cucurbita ficifolia Bouché Cucurbitaceae Chilacayota, Yutu uech (Z) H. F, C, M 1 0.91
87 Cucurbita maxima Duchesne Cucurbitaceae Tamala, Yutu chuga (Z) H. F, C, M 1 0.86
88 Cucurbita moschata Duchesne Cucurbitaceae Calabaza,Yutu yag H. F, M 1 0.67
89 Cucurbita pepo L. Cucurbitaceae Calabaza cáscara delgada H. F, M 1 0.93
Yutu bela (Z)
90 Lagenaria siceraria (Molina) Standl. Cucurbitaceae Bule M 6 0.76
91 Sechium edule Sw. var 1 Cucurbitaceae Chayote verde con espinas, Cuan'yötzi H. F, C 1 0.85
92 Sechium edule Sw. var 2 Cucurbitaceae Chayote verde sin espinas H. F, C 1 0.86
93 Sechium edule Sw. var 3 Cucurbitaceae Chayote verde limón con espinas H. F, C 1 0.83
94 Sechium edule Sw. var 4 Cucurbitaceae Chayote verde limón sin espinas H. F, C 1 0.72
95 Sechium edule Sw. var 5 Cucurbitaceae Chayote blanco grande con espinas H. F, C 1 0.89
96 Sechium edule Sw. var 6 Cucurbitaceae Chayote blanco grande liso H. F, C 1 0.76
97 Cyperus esculentusL. Cyperaceae Hierba para animales M 9 0.79
98 Pteridium aquilinum (L.) Kuhn. Dennstaedtiaceae Copetate, Güi ya (Z) H. F, C 3 0.67
99 Dryopteris filix-mas (L.) Schott. Dryopteridaceae Helecho pequeño C 2 0.85
100 Diospyros nigra (J. F. Gmel.) Perr & Perr, Ebenaceae Zapote negro, Lau gasi (Z) C 1, 4, 5 1.3
101 Acalypha subviscida S. Watson Euphorbiaceae Hierba roja para diarrea, Cuan guidz gach (Z) C 2 0.9
102 Codiaeum variegatum (L.) Rumph. ex A. Juss. Euphorbiaceae Corona de Cristo H. F 3 0.87
103 Croton draco Schltdl. Euphorbiaceae Palo blanco, Ye guidi ya'a (Z) C 4,7, 5 1.7
104 Euphorbia milii Des Moul. Euphorbiaceae Planta de ornato H. F 3 0.85
105 Euphorbia pulcherrima Willd. ex Klotzsch. Euphorbiaceae Noche buena H. F 3 0.9
106 Ricinus communis L. Euphorbiaceae Higuerilla C 2 0.93
107 Crotalaria longirostrata Hook. & Arn. Fabaceae Chepil H. F 1 0.92
108 Diphysa americana (Mill.) M.Sousa. Fabaceae Gallito, Ye'yecho (Z) C 1, 8, 4, 7, 5 3.18
109 Erythrina americana Mill. Fabaceae Zompancle, colorín Cuan btu tzu (Z) H. F, C 1, 4, 7, 5 1.96
110 Inga edulis Mart. Fabaceae Guajinicuil sombra Yag yaj'tul guixi' (Z) C 1, 8, 4, 5 1.89
111 Inga jinicuil Schltdl. Fabaceae Guajinicuil, Yag yaj'tul (Z) H. F, C 1, 8, 4, 5 1.91
112 Leucaena leucocephala (Lam.) de Wit Fabaceae Guaje, La'bada (Z) H. F, C 1, 4, 7, 5 1.89
113 Mimosa pudica L. Fabaceae Vergonzosa, Yötzi rutúi (Z) C 6 1.4
114 Phaseolus coccineus L. var 1 Fabaceae Frijolones, Za laya (Z) H. F, M 1 0.73
115 Phaseolus coccineus L.var 2 Fabaceae Frijol grandote, Za dupi (Z) H. F, C, M 1 0.88
116 Phaseolus vulgaris L var 1 Fabaceae Frijol delgado, Za laz (Z) C, M 1 0.89
117 Phaseolus vulgaris L. var 2 Fabaceae Enredadera de milpa, Za ya'a (Z) H. F, C, M 1 0.9
118 Phaseolus vulgaris L. var 3 Fabaceae Frijol de cuarentena Za chua (Z) H. F, C, M 1 0.84
119 Pisum sativum L. Fabaceae Chícharos, Za'lberj (Z) H. F 1 0.88
120 Tamarindus indica L. Fabaceae Tamarindo H. F 3 0.81
121 Vicia faba L. Fabaceae Habas, Za'rab (Z) H. F 1 0.92
122 Quercus sp. Fagaceae Encino blanco, Ye zuga tchi'ch (Z) C 8, 4, 5 1.69
123 Quercus sp. Fagaceae Encino rojo, Yezuga gach (Z) C 2, 8, 4, 5 1.86
124 Pelargonium x hortorum L.H. Bailey Geraniaceae Geranio H. F 3 0.94
125 Hydrangea macrophylla (Thunb.) Ser. Hydrangeaceae Ortencia, Yaj bdxi'ch (Z) H. F 3 0.79
126 Vismia baccifera (L.) Planch. & Triana Hypericaceae Gancho lucero C 4, 5 1.17
127 Crocosmia × crocosmiiflora (Lemoine) N.E.Br. Iridaceae Gladiola montés, Yaj bar (Z) H. F, M 3 0.73
128 Gladiolus grandiflorus Andrews var 1 Iridaceae Gladiola guinda, Yaj bar xná (Z) M 3 0.85
129 Gladiolus grandiflorus Andrews var 2 Iridaceae Gladiola blanca, Yaj bar chquich (Z) C, M 3 0.77
130 Gladiolus grandiflorus Andrews var 3 Iridaceae Gladiola roja, Yaj bar gach (Z) M 3 0.9
131 Gladiolus grandiflorus Andrews var 4 Iridaceae Gladiola amarilla Yaj bar gulj (Z) H. F, M 3 0.87
132 Gladiolus grandiflorus Andrews var 5 Iridaceae Gladiola rosa, Yaj bar ros (Z) H. F, M 3 0.82
133 Hyptis atrorubens Poit. Lamiaceae Xhuiaj guixi' (Z) M 9 0.89
134 Mentha spicata L. Lamiaceae Hierbabuena, Xhuiaj bela (Z) H. F 1, 2 1.21
135 Origanum vulgare L. Lamiaceae Orégano H. F 1 0.67
136 Plectranthus scutellarioides (L.) R.Br. Lamiaceae Yaj laga guixi' (Z) H. F 3 0.81
137 Salvia lasiocephala Hook. & Arn. Lamiaceae Hierba de flores azules, Guixi' (Z) C 3 0.72
138 Satureja macrostema var. laevigata (Standl.) McVaugh & R. Schmid Lamiaceae Poleo, Xhuiaj zö (Z) H. F 1, 2 1.05
139 Persea americana Mill. var 1 Lauraceae Aguacate de bola cáscara maciza, Xúga chúga (Z) C, M 1, 2, 4, 5 1.89
140 Persea americana Mill. var 2 Lauraceae Aguacate de bola de cáscara delgada, Xúga bela (Z) C, M 1, 2, 4, 5 1.67
141 Persea americana Mill. var 3 Lauraceae Aguacate tipo Hass, Xúga (Z) H. F, C 1, 4, 5 1.18
142 Persea americana Mill var 4 Lauraceae Aguacatillo verde, Xúga laz (Z) H. F, C 1, 2, 4, 5 2.37
143 Persea americana Mill var 5 Lauraceae Aguacatillo morado, Xu la'u (Z) H. F, C 1, 4, 5 1.56
144 Persea schiedeana Nees. Lauraceae Aguacate chupón, Xudu dxi (Z) C 1, 2, 4, 5 2.11
145 Lilium bulbiferum L. Liliaceae Azucena, Ducen (Z) H. F 3 0.92
146 Lilium candidum L. Liliaceae Azucena, Ducen (Z) H. F 3 0.73
147 Byrsonima crassifolia (L.) Kunth Malpighiaceae Nanche, Lau böza (Z) C 4, 1 1.05
148 Magnolia macrophylla var. dealbata (Zucc.) D. L. Johnson Magnoliaceae Magnolia, Yaj zá'a (Z) C, M 2, 3, 7 1.42
149 Heliocarpus appendiculatus Turcz. Malvaceae Árbol de sombra blanco, Ye guidi chquich (Z) C 4, 5 1.16
150 Heliocarpus donnellsmithii Rose Malvaceae Árbol de sombra rojo Ye guidi gach (Z) C 4, 5 1.16
151 Hibiscus rosa-sinensis L. Malvaceae Tulipán rosa H. F 3 0.78
152 Malva parviflora L. Malvaceae Cuan lu'g bitz (Z) C 9 0.77
153 Sida rhombifolia L. Malvaceae Yaj xúba (Z) C 6 0.67
154 Calathea lancifolia Boom Marantaceae Hierba del campo Guixi' (Z) H. F 3 0.86
155 Conostegia xalapensis D. Don Melastomataceae Lalá (Z) C, M 1 0.72
156 Miconia prasina (Sw.) DC. Melastomataceae Lala montés, Lalá guía (Z) M 1 0.83
157 Musa acuminata Colla. var 1 Musaceae Plátano morado Yöla morado (Z) H. F, C 1, 2, 7 1.44
158 Musa acuminata Colla. var 2 Musaceae Plátano de la india Yöla iina (Z) H. F, C 1, 2, 7 1.19
159 Musa acuminata Colla. var 3 Musaceae Plátano manzanita Yöla manzan (Z) H. F, C 1, 2, 7 1.26
160 Musa acuminata Colla. var 4 Musaceae Plátano ratán, Yöla ratan (Z) H. F, C 1, 2, 7 1.47
161 Musa x paradisiaca L. var 1 Musaceae Plátano chaparro Yöla chaparr (Z) H. F, C 1, 2, 7 1.46
162 Musa x paradisiaca L. var 2 Musaceae Plátano macho, Yöla bdua (Z) H. F, C 1, 2, 7 1.33
163 Musa x paradisiaca L. var 3 Musaceae Plátano de castilla Yöla xtil (Z) H. F, C 1, 2, 7 1.38
164 Musa x paradisiaca L. var 4 Musaceae Plátano de burro Yöla burro (Z) H. F, C 1, 2, 7 1.55
165 Musa x paradisiaca L. var 5 Musaceae Plátano ineo, Yöla gasj (Z) H. F, C 1, 2, 7 1.53
166 Psidium friedrichsthalianum (O. Berg) Nied. Myrtaceae Guayabina, Huiy'zin (Z) H. F, C 1, 2 0.67
167 Psidium guajava L. var 1 Myrtaceae Guayaba, Uyaj (Z) H. F, C 1, 2, 4, 5 2.52
168 Psidium guajava L. var 2 Myrtaceae Guayaba pirulera, Uyaj xtil (Z) H. F, C 1, 4, 5 1.47
169 Syzygium jambos (L.) Alston Myrtaceae Guayaba rosa, Uyaj xtil gach (Z) H. F 1, 4, 5 1.39
170 Bougainvillea glabra Choisy Nyctaginaceae Bugambilia H. F 3 1.52
171 Lopezia racemosa Cav. Onagraceae Hierba, Guixi' (Z) C, M 9 0.88
172 Oenothera rosea L'Hér. ex Aiton Onagraceae Hierba, Guixi' (Z) C 9 0.92
173 Dichaea glauca (Sw.) Lindl. Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.85
174 Oncidium hastatum (Bateman) Lindl. Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.77
175 Prosthechea cochleata (L.) W.E. Higgins Orchidaceae Orquídea, Yaj ra'bedx (Z) C 3 0.94
176 Prosthechea radiata (Lindl.) W.E. Higgins Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.79
177 Prosthechea vitellina (Lindl.) W.E. Higgins Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.73
178 Stanhopea whittenii Soto Arenas, Salazar & G. Gerlach. Orchidaceae Orquídea torito, Yaj ra'bedx (Z) H. F 3 0.81
179 Oxalis latifolia Kunth Oxalidaceae Hierba, Guixi' (Z) C 1, 2 1.24
180 Argemone platyceras Link & Otto Papaveraceae Hierba Silvestre, Yaj yötzi guía (Z) C 9 0.67
181 Passiflora edulis Sims. Passifloraceae Maracuya, Guixi' lbá maracuyá (Z) H. F 1 0.81
182 Passiflora ligularis Juss. Passifloraceae Granadina/Grana de moco, Carnedil (Z) H. F, C 1 0.67
183 Phytolacca icosandra L. Phytolaccaceae Quelite, Cuan bédx (Z) M 1 0.92
184 Pinus chiapensis (Martínez) Andresen Pinaceae Pino, Yag' yör dáu (Z) C 8, 4, 5 1.47
185 Pinus sp. Pinaceae Pino, Yag'yör bedx (Z) C 8, 4, 5 1.4
186 Peperomia sp. Piperaceae Hierba del campo C 2 0.67
187 Piper sanctum (Miq.) Schltdl. ex C.DC. Piperaceae Hierba santa, La'xuá (Z) H. F, C 1, 2, 7 1.12
188 Piper umbellatum L. Piperaceae Hierba santa silvestre Laga lá'up (Z) C 2 0.83
189 Plantago major L. Plantaginaceae Hierba cerca de los ríos, Yaj ra'yego (Z) C 2 0.77
190 Cymbopogon citratus (DC.) Stapf. Poaceae Té limón H. F 1, 2 1.06
191 Saccharum officinarum L. Poaceae Caña, Yö'tj (Z) H. F 1, 6 1.17
192 Setaria parviflora (Poir.) Kerguelen. Poaceae Hierba, Da'ca (Z) C 9 1.19
193 Zea mays L. Poaceae Maíz, Yöl (Z) H. F, C, M 1, 2, 6, 9 1.78
194 Portulaca oleracea L. Portulacaceae Verdolagas, Cuan bía'yú (Z) H. F, M 1 0.92
195 Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. Primulaceae Árbol de frutos pequeños, Yag la'zub (Z) C 5, 4 1.25
196 Adiantum capillus-veneris L. Pteridaceae Helecho, Güi bshz (Z) C, M 6 0.86
197 Punica granatum L. Punicaceae Granada, Bzá'a (Z) H. F 1, 4 1.1
198 Eriobotrya japonica (Thunb.) Lindl. Rosacea Níspero H. F, C 1, 4, 7, 5 1.76
199 Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier Rosacea Fresa H. F 1 0.67
200 Prunus persica (L.) Batsch. Rosacea Durazno, Traz (Z) H. F, C 1, 2, 4, 7. 5 3.05
201 Rosa sp. Rosacea Rosal, Yaj ros (Z) H. F 3 0.86
202 Rubus ulmifolius Schott Rosacea Zarzamora, Bez'ká (Z) C 1 0.83
203 Coccocypselum cordifolium Nees & Mart. Rubiaceae Chumpá, Chumpá'siu (Z) C 1, 2 1.06
204 Coffea arabica L. Rubiaceae Café, Yag cape (Z) H. F, C 1, 4 1.1
205 Crusea calocephala DC. Rubiaceae Hierba, Guixi' (Z) M 9 0.9
206 Gardenia jasminoides J. Ellis Rubiaceae Gardenia, Yaj garden (Z) H. F 3 0.9
207 Hamelia patens Jacq. Rubiaceae Arbusto, Lane böni xtil (Z) H. F, C 3, 7 1.13
208 Spermacoce laevis Lam. Rubiaceae Yerba de flor rosa, Xquiaj (Z) C 9 1.22
209 Citrus aurantiifolia (Christm.) Swingle Rutaceae Limón H. F, C 1, 4, 5 1.12
210 Citrus × aurantium L. Rutaceae Naranja, Uiy (Z) H. F, C 1, 8, 4, 5 1.85
211 Citrus aurantiifolia (Christm.) Swingle Rutaceae Lima limón, Uiy lim (Z) H. F, C 1, 4, 5 1.44
212 Citrus medica L. Rutaceae Lima, Guiy xi'x (Z) H. F, C 1, 8, 4, 5 1.93
213 Citrus reticulata Blanco Rutaceae Mandarina H. F, C 1, 4, 5 1.42
214 Citrus x aurantium L. Rutaceae Naranja china, Uiy chin (Z) H. F, C 1, 4, 5 1.41
215 Ruta chalepensis L. Rutaceae Ruda, Rud (Z) H. F 2 0.9
216 Sapindus saponaria L. Sapindaceae Pipe, Bua bibi (Z) C 8, 4, 5 1.36
217 Pouteria campechiana (Kunth) Baehni Sapotaceae Zapote, La'tzä (Z) C 1, 4, 5 1.5
218 Pouteria sapota (Jacq.) H.E. Moore & Stearn Sapotaceae Mamey, La'xon (Z) H. F, C 1, 4, 5 1.47
219 Manilkara zapota (L.) P. Royen Sapotaceae Chicozapote C 1, 8, 4, 5 1.92
220 Brugmansia × candidaPers. Solanaceae Floripondio blanco, Yaj bua ijed (Z) H. F, C 7, 3 1.1
221 Brugmansia suaveolens (Humb. & Bonpl. ex Willd.) Sweet Solanaceae Floripondio rosa, Yaj bua ijed(Z) H. F, C 7, 3 1.22
222 Capsicum annuum var. annuum 1 Solanaceae Chile cimarrón, Guina'zimarrón (Z) H. F, C 1 0.89
223 Capsicum annuum var. annuum 2 Solanaceae Chile verde, Guina'ya'a (Z) H. F 1 0.76
224 Capsicum annuum var. annuum 3 Solanaceae Chile serrano, Guina'serrano (Z) H. F, C 1 0.79
225 Capsicum annuum var. glabriusculum (Dunal) Heiser & Pickersgill Solanaceae Chile piquín, Guina'hue'n (Z) H. F, C 1 0.72
226 Capsicum pubescens Ruiz & Pav. Solanaceae Chile marongo o canario, Guina'marongo (Z) H. F, C, M 1 0.9
227 Cestrum nocturnum L. Solanaceae Huele de noche, Cuan xu'u (Z) H. F, C, M 1, 2, 3, 7 1.9
228 Physalis ixocarpa Brot. ex Hornem Solanaceae Miltomate, Bex qui'x (Z) H. F, C 1 0.85
229 Solanum lycopersicum L. Solanaceae Tomate, Bex lua (Z) H. F 1 0.93
230 Solanum lycopersicum L. Solanaceae Tomatito chiquito, Bex laz (Z) H. F, C 1, 2 1.22
231 Solanum nigrescens M. Martens & Galeotti Solanaceae Hierba mora, Bex iechugu (Z) H. F, C 2 0.87
232 Tropaeolum majus L. Tropaeolaceae Mastuerzo, Yaj guixi' (Z) H. F 3 0.73
233 Boehmeria caudata Sw. Urticaceae Chit laca, Xit'lá'ca (Z) C 5, 4 1.21
234 Cecropia obtusifolia Bertol. Urticaceae Yag yeré (Z) C 8, 4, 5 1.47
235 Lantana camara L. Verbenaceae Hierba amarga, Yaj xía (Z) C 2 0.84
236 Kniphofia uvaria (L.) Oken Xanthorrhoeaceae Cola de ratón, Xbamba bxí'dzu (Z) H. F 3, 7 1.25
237 Aloe vera (L.) Burm.f. Xanthorrhoeaceae Sábila H. F 2 0.93
238 Hedychium coronarium J. Koenig Zingiberaceae Flor de agua, Yaj yöla (Z) C 3 0.85

Supplementary data 2.

2007-4476-bs-98-01-128-suppl2.pdf

Chi-square and proportions test

For the general test the α = 0.05; while for paired tests (post hoc) the new one α = k(k-1/2); where k is the number of groups compared in the general test.

Table S2.1 Chi-square test for the biological form categories of the three agroforestry systems species in general and their comparison in pairs. χ2 (5,211) = 259.25, p < 0.001. New alpha of 0.0033 for paired comparisons. 

Pair compared Chi-square and p value Pair compared Chi-square and p value
Herbaceous-Trees χ2 (1,181) = 32.75, p < 0.001 Trees-Ferns χ2 (1,55) = 43.65, p < 0.001
Herbaceous-Shrubs χ2 (1,154) = 70.23, p < 0.001 Shrubs -Climbing χ2 (1,45) = 0.55, p = 0.45
Herbaceous-Climbing χ2 (1,149) = 79.73, p < 0.001 Shrubs-Epiphytes χ2 (1,34) = 7.52, p = 0.006
Herbaceous-Epiphytes χ2 (1,38) = 104.35, p < 0.001 Shrubs-Ferns χ2 (1,28) = 17.28, p < 0.001
Herbaceous-Ferns χ2 (1,132) = 120.27, p < 0.001 Climbing-Epiphytes χ2 (1,29) = 4.17, p = 0.04
Trees-Shrubs χ2 (1,77) = 9.46, p < 0.001 Climbing-Ferns χ2 (1,23) = 12.56, p < 0.001
Trees-Climbing χ2 (1,72) = 14.22, p < 0.001 Epiphytes-Ferns χ2 (1,12) = 3, p = 0.08
Trees-Epiphytes χ2 (1,61) = 30.31, p < 0.001

Table S2.2 Proportion test for the biological form of species between the three Agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons. 

Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa

  • Herbaceous

  • χ2 (2,119) = 63.21, p < 0.001

χ2 (1,119) = 4.13, p = 0.04 χ2 (1,119) = 32.35, p < 0.001 χ2 (1,119) = 14.4, p < 0.001

  • Trees

  • χ2 (2,45) = 39.61, p < 0.001

χ2 (1,45) = 8.56, p < 0.001 χ2 (1,45) = 14.28, p < 0.001 χ2 (1,45) = 32.20, p < 0.001

  • Shrubs

  • χ2 (2,21) = 17.45, p < 0.001

χ2 (1,21) = 0.23, p = 0.63 χ2 (1,21) = 18.18, p < 0.001 χ2 (1,21) = 15.21, p < 0.001

  • Climbing

  • χ2 (2,18) = 5.10, p = 0.07

χ2 (1,18) = 2.13, p = 0.14 χ2 (1,18) = 4.48, p = 0.03 χ2 (1,18) = 0.47, p = 0.49

  • Epiphytes

  • χ2 (2,7) = 5.6, p = 0.06

χ2 (1,7) = 0.4, p = 0.52 χ2 (1,7) = 6, p < 0.001 χ2 (1,7) = 4, p = 0.04

  • Ferns

  • χ2 (2,3) = 1.6, p = 0.44

χ2 (1,3) = 0, p = 1 χ2 (1,3) = 0, p = 1 χ2 (1,3) = 1, p = 0.31

Table S2.3 Chi-square test for the categories of origin of species of agroforestry systems in general and proportional test for their comparison in pairs. χ2 (1,211) =7. 20, p = 0.001. New alpha of 0.016 for paired comparisons. 

Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa

  • Native

  • χ2 (2,125) = 45.51, p < 0.001

χ2 (1,125) = 6.69, p < 0.001 χ2 (1,125) = 19.66, p < 0.001 χ2 (1,125) = 46.37, p < 0.001

  • Introduced

  • χ2 (2,86) = 60.10, p < 0.001

χ2 (1,86) = 17.06, p < 0.001 χ2 (1,86) = 54.93, p < 0.001 χ2 (1,86) = 14.29, p < 0.001

Table S2.4 Chi-square test for the categories of plant management grade of agroforestry systems in general and their comparison in pairs. χ2 (4,211) = 314.19, p < 0.001. New alpha of 0.005 for paired comparisons. 

Pair compared Chi-square and p value Pair compared Chi-square and p value
Cultivated-Wild χ2 (1,189) =24.89, p < 0.001 Wild-Promoted χ2 (1,75) = 67.21, p < 0.001
Cultivated-Tolerated χ2 (1,160) = 112.22, p < 0.001 Wild-Protected χ2 (1,76) = 64.47, p < 0.001
Cultivated- Promoted χ2 (1,149) = 141.11, p < 0.001 Tolerated-Promoted χ2 (1,15) = 8.06, p < 0.001
Cultivated-Protected χ2 (1, 150) = 138.24, p < 0.001 Tolerated-Protected χ2 (1,16) = 6.25, p = 0.01
Wild-Tolerated χ2 (1, 86) = 41.86, p < 0.001 Promoted-Protected χ2 (1,5) = 0.2, p = 0.65

Table S2.5 Proportion test for the degree of plant management between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons. 

Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa

  • Cultivated

  • χ2 (2, 135) = 85.19, p < 0.001

χ2 (1, 135) = 16.98, p < 0.001 χ2 (1, 135) = 84.23, p < 0.001 χ2 (1,135) = 31.18, p < 0.001

  • Wild

  • χ2 (2,62) = 45.02, p < 0.001

χ2 (1,62) = 26.16, p < 0.001 χ2 (1,62) = 0.03, p = 0.85 χ2 (1,62) = 27.74, p < 0.001

  • Tolerated

  • χ2 (2,9) = 1.9, p = 0.38

χ2 (1,9) = 0.25, p = 0.61 χ2 (1,9) = 0.81 p = 0.36 χ2 (1,9) = 1.92, p = 0.16

  • Promoted

  • χ2 (2,2) = 0, p = 1

χ2 (1,2) = 0, p = 1 χ2 (1,2) = 0, p = 1 χ2 (1,2) = 0, p = 1

  • Protected

  • χ2 (2,3) = 3.5, p = 0.17

χ2 (1,3) = 1, p = 0.31 χ2 (1,3) = 1, p = 0.31 χ2 (1,3) = 3, p = 0.08

Table S2.6 Proportion test for the species richness of agroforestry systems in general and their comparison in pairs. χ2 (2,211) = 162.71, p < 0.001. New alpha of 0.016 for paired comparisons. 

Pair compared Chi-square and p value
Home gardens-Coffee plantations χ2 (1,211) = 1.19, p = 0.27
Home gardens-Milpa χ2 (1,211) = 130.11, p < 0.001
Coffee plantations-Milpa χ2 (1,211) = 107.67, p < 0.001

Table S2.7 Proportion test for used part of agroforestry systems plants in general and their comparison in pairs. χ2 (7,211) = 453.83, p < 0.001). New alpha of 0.0017 for paired comparisons. 

Pair compared Chi-square and p value Pair compared Chi-square and p value
Whole plant-Leaves χ2 (1,211) = 67.24, p < 0.001 Flower-Stem χ2 (1,211) = 7.50, p = 0.006
Whole plant-Flower χ2 (1,211) = 127.84, p < 0.001 Flower-Seed χ2 (1,211) = 8.28, p = 0.004
Whole plant-Fruit χ2 (1,211) = 53.99, p < 0.001 Flower-Pod χ2 (1,211) = 18.78, p < 0.001
Whole plant-Stem χ2 (1,211) = 78.78, p < 0.001 Flower-Root χ2 (1,211) = 23.09, p < 0.001
Whole plant-Seed χ2 (1,221) = 179.74, p < 0.001 Fruit-Stem χ2 (1,211) = 2.42, p = 0.11
Whole plant-Pod χ2 (1,211) = 202.59, p < 0.001 Fruit-Seed χ2 (1,211) = 49.09, p < 0.001
Whole plant-Root χ2 (1,211) = 209.55, p < 0.001 Fruit-Pod χ2 (1,211) = 66.15, p < 0.001
Leaves-Flower χ2 (1,211) = 12.02, p < 0.001 Fruit-Root χ2 (1,211) = 71.82, p < 0.001
Leaves-Fruit χ2 (1,211) = 0.66, p = 0.41 Stem-Seed χ2 (1,211) = 30.64, p < 0.001
Leaves-Stem χ2 (1,211) = 0.40, p = 0.52 Stem-Pod χ2 (1,211) = 45.78, p < 0.001
Leaves-Seed χ2 (1,211) = 38.41, p < 0.001 Stem-Root χ2 (1,211) = 51.06, p < 0.001
Leaves-Pod χ2 (1,211) = 54.47, p < 0.001 Seed-Pod χ2 (1,211) = 2.19, p = 0.13
Leaves-Root χ2 (1,211) = 59.93, p < 0.001 Seed-Root χ2 (1,211) = 4.40, p = 0.03
Flower-Fruit χ2 (1,211) = 18.97, p < 0.001 Pod-Root χ2 (1,211) = 0.12, p = 0.72

Table S2.8 Proportion test for used part of plants between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons. 

Used part Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa

  • Whole plant

  • χ2 (2, 205) = 90.45, p < 0.001

χ2 (1, 205) = 0.15, p = 0.69 χ2 (1, 205) = 70.70, p < 0.001 χ2 (1,205) = 78.18, p < 0.001

  • Leaves

  • χ2 (2,106) = 28.04, p < 0.001

χ2 (1,106) = 1.23, p < 0.26 χ2 (1,106) = 25.64, p < 0.001 χ2 (1,106) = 15.16, p < 0.001

  • Flower

  • χ2 (2,44) = 13.54, p = 0.16

χ2 (1,44) = 0.04, p = 0. 82 χ2 (1,44) = 2.56, p = 0.10 χ2 (1,44) = 1.36, p = 0.24

  • Fruit

  • χ2 (2,129) = 50.44, p < 0.001

χ2 (1,129) = 0.06, p = 0.80 χ2 (1,129) = 38.30, p < 0.001 χ2 (1,129) = 42.55, p < 0.001

  • Stem

  • χ2 (2,85) = 56.04, p < 0.001

χ2 (1,85) = 10.41, p < 0.001 χ2 (1,85) = 19.44, p < 0.001 χ2 (1,85) = 53.92, p < 0.001

  • Seed

  • χ2 (2,26) = 2.19, p = 0.33

χ2 (1,26) = 1.39, p = 0.23 χ2 (1,26) = 0.08, p = 0.77 χ2 (1,26) = 0.37, p = 0.54

  • Pod

  • χ2 (2,12) = 0.75, p = 0.68

χ2 (1,12) = 0.01, p = 1 χ2 (1,12) = 0.01, p = 1 χ2 (1,12) = 0.18, p = 0.66

  • Root

  • χ2 (2,4) = 3, p = 0.22

χ2 (1,4) = 0.01, p = 1 χ2 (1,4) = 0.66, p = 0.41 χ2 (1,4) = 0.66, p = 0.41

Table S2.9 Proportion test for the destination of species of agroforestry systems in general and their comparison in pairs. χ2 (2,211) = 492.11, p < 0.001. New alpha of 0.016 for paired comparisons. 

Destination Chi-square and p value
Self-consumption-Selling χ2 (1,211) = 304.4, p < 0.001
Self-consumption-Bartering χ2 (1,211) = 394.78, p < 0.001
Selling-Bartering χ2 (1,211) = 19.09, p < 0.001

Table S2.10 Proportion test for destination of species between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons. 

Destination Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa

  • Self-consumption

  • χ2 (2, 211) = 162.71, p < 0.001

χ2 (1, 211) = 1.19, p = 0.27 χ2 (1, 211) = 130.11, p < 0.001 χ2 (1,211) = 107.67, p < 0.001

  • Selling

  • χ2 (2,57) = 12.78, p < 0.001

χ2 (1,57) = 2.31, p = 0.12 χ2 (1,57) = 11.40, p < 0.001 χ2 (1,57) = 2.95, p = 0.08

  • Bartering

  • χ2 (2,14) = 1.5, p = 0.47

χ2 (1,14) = 0.17, p = 0.67 χ2 (1,14) = 0.01, p = 1 χ2 (1,14) = 0.65, p = 0.41

Table S2.11 Proportion test for categories of plants use of agroforestry systems in general and their comparison in pairs. χ2 (8,211) = 260.83, p < 0.001. New alpha of 0.0013 for paired comparisons. 

Pair compared Chi-square and p value Pair compared Chi-square and p value
Food-Medicinal χ2 (1,211) = 39.77, p < 0.001 Ornamental-Live fence χ2 (1,211) = 26.11, p < 0.001
Food-Ornamental χ2 (1,211) = 9.50, p = 0.002 Ornamental-Construction χ2 (1,211) = 52.61, p < 0.001
Food-Firewood χ2 (1,211) = 35.86, p < 0.001 Ornamental-Forage χ2 (1,211) = 56.92, p < 0.001
Food-Shade χ2 (1,211) = 38.44, p < 0.001 Firewood-Shade χ2 (1,211) = 0.01, p = 0.90
Food-Domestic use χ2 (1,211) = 116.93, p < 0.001 Firewood-Domestic use χ2 (1,211) = 30.95, p < 0.001
Food-Live fence χ2 (1,211) = 65.32, p < 0.001 Firewood-Live fence χ2 (1,211) = 4.82, p = 0.02
Food-Construction χ2 (1,211) = 100.55, p < 0.001 Firewood-Construction χ2 (1,211) = 20.59, p < 0.001
Food-Forage χ2 (1,211) = 105.79, p < 0.001 Firewood-Forage χ2 (1,211) = 23.70, p < 0.001
Medicinal-Ornamental χ2 (1,211) = 10.37, p < 0.001 Shade-Domestic use χ2 (1,211) = 28.78, p < 0.001
Medicinal-Firewood χ2 (1,211) = 0.05, p = 0.82 Shade-Live fence χ2 (1,211) = 3.88, p = 0.04
Medicinal-Shade χ2 (1,211) = 0.01, p = 1 Shade-Construction χ2 (1,211) = 18.73, p < 0.001
Medicinal-Domestic use χ2 (1,211) = 27.70, p < 0.001 Shade-Forage χ2 (1,211) = 21.73, p < 0.001
Medicinal-Live fence χ2 (1,211) = 3.44, p = 0.06 Domestic use-Live fence χ2 (1,211) = 12.03, p < 0.001
Medicinal-Construction χ2 (1,211) = 17.82, p < 0.001 Domestic use-Construction χ2 (1,211) = 1.09, p = 0.29
Medicinal-Forage χ2 (1,211) = 20.76, p < 0.001 Domestic use-Forage χ2 (1,211) = 0.42, p = 0.51
Ornamental-Firewood χ2 (1,211) = 8.33, p < 0.001 Live fence-Construction χ2 (1,211) = 5.41, p = 0.01
Ornamental-Shade χ2 (1,211) = 9.66, p < 0.001 Live fence-Forage χ2 (1,211) = 7.23, p < 0.001
Ornamental-Domestic use χ2 (1,211) = 66.37, p < 0.001 Construction -Forage χ2 (1,211) = 0.03, p = 0.84

Table S2.12 Proportion test for categories of plants use between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons. 

Use category Home gardens-Coffee plantations Home gardens-Milpa Coffee plantations-Milpa

  • Food

  • χ2 (2, 113) = 57.07, p < 0.001

χ2 (1, 113) = 0.25, p = 0.61 χ2 (1, 113) = 48.99, p < 0.001 χ2 (1,113) = 41.44, p < 0.001

  • Ornamental

  • χ2 (2,79) = 31.84, p < 0.001

χ2 (1,79) = 0.44, p = 0.50 χ2 (1,79) = 20.85, p < 0.001 χ2 (1,79) = 28.11, p < 0.001

  • Medicinal

  • χ2 (2,47) = 64.72, p < 0.001

χ2 (1,47) = 23.11, p < 0.001 χ2 (1,47) = 58, p < 0.001 χ2 (1,47) = 9.36, p < 0.001

  • Firewood

  • χ2 (2, 50) = 61.82, p < 0.001

χ2 (1, 50) = 15.59, p < 0.001 χ2 (1, 50) = 16.84, p < 0.001 χ2 (1,50) = 57.92, p < 0.001

  • Shade

  • χ2 (2,48) = 62.02, p < 0.001

χ2 (1, 48) = 17.63, p < 0.001 χ2 (1, 48) = 14.49, p < 0.001 χ2 (1,48) = 57.07, p < 0.001

  • Domestic use

  • χ2 (2, 9) = 109.89, p = 0.15

χ2 (1, 9) = 1.46, p = 0.22 χ2 (1, 9) = 0.01, p = 1 χ2 (1,9) = 1.46, p = 0.22

  • Live fence

  • χ2 (2, 31) = 25.8, p < 0.001

χ2 (1, 31) = 0.17, p = 0.67 χ2 (1, 31) = 22.15, p < 0.001 χ2 (1,31) = 17.38, p < 0.001

  • Construction

  • χ2 (2,15) = 24.45, p < 0.001

χ2 (1, 15) = 10.02, p < 0.001 χ2 (1, 15) = 0.91, p < = 0.33 χ2 (1,15) = 17.60, p < 0.001

  • Forage

  • χ2 (2, 13) = 10.76, p < 0.001

χ2 (1, 13) = 8.60, p < 0.001 χ2 (1, 13) = 2.87, p = 0.08 χ2 (1,13) = 1.06, p = 0.30

Received: September 01, 2019; Accepted: December 06, 2019; Published: March 11, 2020

* Author for correspondence: gmanzane@ipn.mx

Associated Editor: José Blancas

Author contributions: SPM, Research design, bibliographic review, field work, database compilation, statistical data management, writing analysis; GIMM, Research design, bibliographic review, taxonomic determination of species, writing, analysis and revision of the manuscript; ASV, Bibliographic review, statistical data management, writing, analysis and revision of the manuscript; MAVD, Bibliographic review, taxonomic determination of species, writing, analysis and revision of the manuscript.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License