SciELO - Scientific Electronic Library Online

 
vol.23 número45Bibliographical Review. Sáez, D., & Cabanelas, J. (1997). Cooperar para competir con éxito. Madrid: Ediciones Pirámide. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Mercados y negocios

versión On-line ISSN 2594-0163versión impresa ISSN 1665-7039

Merc. negocios vol.23 no.45 Zapopan ene./abr. 2022  Epub 15-Ago-2022

https://doi.org/10.32870/myn.vi45.7665.g6726 

Indicadores Financieros y Económicos

Value at Risk (VaR)

Valor en Riesgo

1Universidad de Guadalajara (México)


The technique (VaR) is a statistical measure of the risk. It is associated with financial risks related to the high volatility in prices, interest rates, or exchange rates. It is used massively by entities because of the necessity to measure risk in constantly traded portfolios.

The (VaR) is based on the principles of Portfolio Theory. With this, the risk resulting from the market position is managed and valued. This theory supports that a portfolio is efficient when it maximizes its return for a certain level of risk or minimizes its risk for a certain level of return. The (VaR) measures the relationship between profitability and risk to obtain an efficient portfolio. It takes up the concepts introduced by Markowitz ( 1959 ) and Sharpe ( 1964 ) and applies them in a standardized and statistically normalized context, with constantly updated databases.

Probability. The (VaR) of a portfolio is defined as the amount of money lost that does not exceed if the current portfolio is held for a certain period (market days instead of calendar days) with a specified probability. The level of significance or uncertainty in the benefits caused by changes in market conditions depends on the risk aversion of the investor, the more aversion, the lower the level of significance chosen.

Horizon. The risk horizon is the period over which the potential loss is measured. Depending on the liquidity, the different risks are valued over different periods, the more liquidity, the shorter the time over which the (VaR) is valued. In essence, the (VaR) of a portfolio is the minimum expected loss for a certain time horizon and confidence level, measured in a specific reference currency ( Blanco & Garman, 1998) .

For a single or simple position, risk is determined by position size and price volatility.

RISK = POSITION SIZE X VOLATILITY X PRICE

The (VaR) is calculated for a single financial product or all financial products in the portfolio. For example, if we have two highly correlated financial products (if one rises, the other tends to rise as well), the joint risk of the two securities may be greater than the sum of the individual risks. Lower correlations between financial products (the normal case) make the (VaR) of a portfolio less than the sum of the VaRs of the individual positions, this as an effect of diversification.

Methods for calculating the VAR. It is important to note that the (VaR) is valid under normal market conditions. If the market is in crisis, then the expected loss of a financial asset is calculated through other methods. Some of these alternative methods is the stress test or extreme values.

Financial losses are the result of statistics and the models and parameters used for their calculation, therefore, there are several ways to calculate (VaR), highlighting three of them:

  • a) Monte Carlo Simulation Method. Estimate the (VaR) by generating thousands of possible outcomes based on the initial data entered.

  • b) Historical Simulation Method. Calculate the (VaR) through the historical price data of each financial asset.

  • c) Analytical / Parametric Method. Delta - Gamma. Estimate the (VaR) using estimated profitability data.

In all cases, it is necessary to estimate the profitability distribution of a portfolio in two components:

  1. Estimating the joint probability distribution for various risk factors affecting a portfolio. These factors can include many interest rates, share prices, or exchange rates, assuming the risk factors have had distributed as a normal one, with volatilities and correlations based on recent market behavior.

  2. Determining a probability distribution for portfolio return based on the previously constructed joint distribution and the portfolio's sensitivity to each risk factor. The sensitivity will depend on its current composition, and thus the estimated (VaR) reflects the portfolio's current exposure to risk. The (VaR) analysis can be systematized, although it is necessary to have a database of volatilities and estimated correlations for all risk factors that may affect the portfolio.

Condition for the selection of the Value at Risk method. The method assumes a normal distribution for the price of all financial products. Use the modified duration to relate the change in price to the movement of interest rates. It establishes a confidence interval given the maximum variations in the price of a portfolio that it is willing to support. They must also consider the existing correlations between the elements of the portfolio. The method is valid to carry out measures and control risks under normal conditions of financial markets and is applicable to products traded in liquid and transparent markets. The methodology assumes parallel movements in the interest rate curve, not allowing to simulate other movements.

Methodology (VaR) weaknesses. One flaw is that it only measures future risk in one direction. This sense can be one of the following two:

a) Since the joint distribution of risk factors is based on the recent behavior of these factors in the market, the analysis does not consider sudden behaviors until they have taken place. For this reason, VaR analysis is replaced by other methods, such as Stress Testing.

b) Since the analysis is based on the current structure of the portfolio, it measures the future risk of the portfolio according to the current composition.

The Risk Metrics of J.P. Morgan. It approximates (VaR) based on volatility and correlation, which implies several historical prices, price volatilities, and correlative data for all types of transactions.

The RiskMetrics model emerged in 1989. The owner of J.P. Morgan, Dennis Weatherstone, asked for a report that would measure in detail the financial risk of his company. In 1992, after an exhaustive study, the company published the RiskMetrics methodology ( Padula & Bacchini, 2014 ).

Essentially, the method uses price/series fluctuations for all financial products. It includes, for example, exchange rates for two currencies, yield curves for Treasuries in USD, or equity prices depending on the most important indices.

A comprehensive risk management and control system encompasses risk measurement and includes the establishment of policies, procedures, guidelines, and controls. All financial entities must consider risk management in their organization charts and promote commitment to this process by senior management.

The (VaR) is a commonly accepted report as a measure of market risk, allowing the setting of limits and the establishment of comparisons between strategic business units, also, it favors the evaluation of the degree of execution of each branch of activity on an adjusted basis to risk, at the same time that it becomes a crucial measure for the determination of own capital requirements, providing a complete report on market risk, without becoming a comprehensive risk management and control system.

Currently, there is no optimal methodology for estimating (VaR). All have advantages and disadvantages. In practice, many entities use more than one model to measure financial risk. They are clear that all applied analytical approaches and processes provide a useful view of market risk.

Financial indicators are useful performance measures for charting long-term financial direction, proposing clear strategies, and taking appropriate actions.

Next, the evolution of some economic and financial indicators of the Mexican environment is described and provided to facilitate decision-making related to personal and company strategies in a comprehensive manner.

  1. National Consumer Price Index (INPC, Spanish)

  2. The Price and Quotation Index of the Mexican Stock Exchange (IPC, Spanish)

  3. Exchange rate

  4. Equilibrium interbank interest rate (TIIE, Spanish)

  5. CETES rate of return

  6. Investment units (UDIS, Spanish)

1. NATIONAL CONSUMER PRICE INDEX (INPC)

Born in 1995 and reflecting changes in consumer prices, measures the general increase in prices in the country. It is calculated fortnightly by the Bank of Mexico and INEGI (2021). INPC is published in the Official Gazette of the Federation on the 10th and 25th of each month. The reference period is the second half of December 2010.

Table 1 Accumulated inflation in the year Base 2nd Fortnight of December 2010 100 with data provided by Banco de México 

Period 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
January 1.48 0.77 0.98 0.79 0.90 -0.09 0.38 1.70 0.53 0.09 0.48 0.86
February 2.15 1.42 1.47 1.46 1.15 0.09 0.82 2.29 0.91 0.06 0.90 1.50
March 2.52 1.84 1.55 1.99 1.43 0.51 0.97 2.92 1.24 0.44 0.85 2.34
April 1.98 0.72 0.69 1.81 1.24 0.25 0.65 3.04 0.90 0.50 -0.17 2.67
May 0.60 -0.70 -0.65 0.95 0.91 -0.26 0.20 2.92 0.73 0.21 0.22 2.88
June 0.49 -0.41 -0.41 1.12 1.09 -0.09 0.31 3.18 1.12 0.27 0.76 3.43
July 0.56 -0.04 0.32 1.14 1.42 0.06 0.57 3.57 1.66 0.65 1.43 4.04
August 0.91 0.30 0.92 1.31 1.73 0.27 0.86 4.08 2.26 0.63 1.82 4-24
September 1.27 0.73 1.12 1.61 2.18 0.27 1.47 4.41 2.69 0.89 2.06 4.88
October 2.35 2.33 2.12 2.77 2.74 1.16 2.09 5.06 3.22 1.44 2.68 5.76
November 3.89 4.87 3.86 4.57 3.57 1.71 2.89 6.15 4.10 2.26 2.76 6.97
December 4.19 5.81 3.97 5.21 4.08 2.13 3.36 6.77 4.83 2.83 3.15

Route: Financiero y bursátil > Indicadores financieros y bursátiles > Índice de precios y cotizaciones de la Bolsa Mexicana de Valores > Último índice del mes

Source: Own elaboration ( INEGI, 2021 )

Source: Own elaboration ( INEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de interés bancarias > Equilibrium interbank interest rate (TIIE)(TIIE) >A 28 días (al cierre del mes)

Graph 1. Inflation in Mexico (2010-2020 accumulated at the end of the year) 

Source: Own elaboration ( INEGI, 2021) . Route: Precios e Inflation > National Consumer Price Index>Mensual > Índice > Índice general y por objeto del gasto > Índice general

Graph 2 Inflation in Mexico (accumulated January-November 2021) 

2. THE PRICE AND QUOTATION INDEX OF THE MEXICAN STOCK EXCHANGE (IPC)

Represents the change in the values ​​traded on the Mexican Stock Exchange concerning the previous day to determine the percentage of rising or fall of the most representative shares of the companies listed therein.

Table 2 The Price and Quotation Index of the Mexican Stock Exchange Base October 1978 078100 

Period 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
January 30,392 36,982 37,422 45,278 40,879 40,951 43,631 47,001 50,456 43,988 44,862 42,986
February 31,635 37,020 37,816 44,121 38,783 44,190 43,715 46,857 47,438 42,824 41,324 44,593
March 33,266 37,441 39,521 44,077 40,462 43,725 45,881 48,542 46,125 43,281 34,554 47,246
April 32,687 36,963 39,461 42,263 40,712 44,582 45,785 49,261 48,354 44,597 36,470 48,010
May 32,039 35,833 37,872 41,588 41,363 44,704 45,459 48,788 44,663 42,749 36,122 50,886
June 31,157 36,558 40,199 40,623 42,737 45,054 45,966 49,857 47,663 43,161 37,716 50,290
July 32,309 35,999 40,704 40,838 43,818 44,753 46,661 51,012 49,698 40,863 37,020 50,868
August 31,680 35,721 39,422 39,492 45,628 43,722 47,541 51,210 49,548 42,623 36,841 53,305
Sep. 33,330 33,503 40,867 40,185 44,986 42,633 47,246 50,346 49,504 43,011 37,459 51,386
Oct. 35,568 36,160 41,620 41,039 45,028 44,543 48,009 48,626 43,943 43,337 36,988 51,310
Nov. 36,817 36,829 41,834 42,499 44,190 43,419 45,286 47,092 41,733 42,820 41,779 49,699
Dec. 38,551 37,077 43,706 42,727 43,146 42,998 45,643 49,354 41,640 43,541 44,067 53,272

Route: Financiero y bursátil > Indicadores financieros y bursátiles > Índice de precios y cotizaciones de la Bolsa Mexicana de Valores > Último índice del mes

Source: Own elaboration ( INEGI, 2021)

Source: Own elaboration ( INEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Índice de precios y cotizaciones de la Bolsa Mexicana de Valores > Último índice del mes

Graph 3 The Price and Quotation Index of the Mexican Stock Exchange, 2010 - 2021 (Score at the end of each year) 

Source: Own elaboration ( INEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Índice de precios y cotizaciones de la Bolsa Mexicana de Valores > Último índice del mes

Graph 4 The Price and Quotation Index of the Mexican Stock Exchange, January-December 2021 (Score at the end of each month) 

3. EXCHANGE RATE

Es el valor del peso mexicano con respecto al dólar calculado con el Promedio diario de los cinco bancos más importantes del país, que refleja el precio spot (de contado), negociado entre bancos. Está altamente relacionado con la Inflation, la rate de interés, y la Bolsa Mexicana de Valores.

Table 3 Exchange rate National currency per US dollar parity at the end of each period 

Period 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
January 12.81 12.02 12.95 12.71 13.37 14.69 18.45 21.02 18.62 19.04 18.91 20.22
February 12.96 12.17 12.87 12.87 13.30 14.92 18.17 19.83 18.65 19.26 19.78 20.94
March 12.61 11.97 12.80 12.36 13.08 15.15 17.40 18.81 18.33 19.38 23.48 20.44
April 12.24 11.59 13.20 12.16 13.14 15.22 19.40 19.11 18.86 19.01 23.93 20.18
May 12.68 11.63 13.91 12.63 12.87 15.36 18.45 18.51 19.75 19.64 22.18 19.92
June 12.72 11.84 13.66 13.19 13.03 15.57 18.91 17.90 20.06 19.21 23.09 19.91
July 12.83 11.65 13.28 12.73 13.06 16.21 18.86 17.69 18.55 19.99 22.20 19.85
August 12.73 12.41 13.27 13.25 13.08 16.89 18.58 17.88 19.07 20.07 21.89 20.06
September 12.86 13.42 12.92 13.01 13.45 17.01 19.50 18.13 18.90 19.68 22.14 20.56
October 12.45 13.20 13.09 12.89 13.42 16.45 18.84 19.15 19.80 19.16 21.25 20.53
November 12.33 14.03 13.04 13.09 13.72 16.55 20.55 18.58 20.41 19.61 20.14 21.45
December 12.40 13.99 13.01 13.08 14.72 17.21 20.73 19.79 19.68 18.87 19.91 20.47

NOTE: Exchange rate FIX by The Banco de México, used for settle obligations denominated in foreign currency. Quote at the endRoute: Financiero y bursátil > Indicadores financieros y bursátiles > Cotización del dólar en el mercado cambiario nacional > Exchange rate para solventar obligaciones en moneda extranjera > Cotizaciones al cierre del mes. Venta

Source: Own elaboration ( INEGI, 2021) .

Source: Own elaboration ( INEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Cotización del dólar en el mercado cambiario nacional > Exchange rate para solventar obligaciones en moneda extranjera > Cotizaciones al cierre del mes. Venta

Graph 5 Exchange rate (National currency per US dollar, 2010-2021, FIX parity at the end of each year) 

Source: Own elaboration ( INEGI, 2021) . Route: Financiero y bursátil > Indicadores financieros y bursátiles > Cotización del dólar en el mercado cambiario nacional > Exchange rate para solventar obligaciones en moneda extranjera > Cotizaciones al cierre del mes. Venta

Graph 6 Exchange rate (National currency per US dollar, January-December, FIX parity at the end of each month) 

4. EQUILIBRIUM INTERBANK INTEREST RATE (TIIE).

On March 23, 1995, the Bank of Mexico, to establish an interbank interest rate that better reflects market conditions, released the Interbank Equilibrium Interest Rate through the Official Gazette of the Federation.

Table 4 Equilibrium interbank interest rate 28day quote 

Period 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
January 4.91 4.86 4.79 4.84 3.78 3.29 3.56 6.15 7.66 8.59 7.50 4.47
February 4.92 4.84 4.78 4.80 3.79 3.29 4.05 6.61 7.83 8.54 7.29 4.36
March 4.92 4.84 4.77 4.35 3.81 3.30 4.07 6.68 7.85 8.51 6.74 4.28
April 4.94 4.85 4.75 4.33 3.80 3.30 4.07 6.89 7.85 8.50 6.25 4.28
May 4.94 4.85 4.76 4.30 3.79 3.30 4.10 7.15 7.86 8.51 5.74 4.29
June 4.94 4.85 4.77 4.31 3.31 3.30 4.11 7.36 8.10 8.49 5.28 4.32
July 4.92 4.82 4.78 4.32 3.31 3.31 4.59 7.38 8.11 8.47 5.19 4.52
August 4.90 4.81 4.79 4.30 3.30 3.33 4.60 7.38 8.10 8.26 4.76 4.65
September 4.90 4.78 4.81 4.03 3.29 3.33 4.67 7.38 8.12 8.04 4.55 4.75
October 4.87 4.79 4.83 3.78 3.28 3.30 5.11 7.38 8.15 7.97 4.51 4.98
November 4.87 4.80 4.85 3.80 3.31 3.32 5.57 7.39 8.34 7.78 4.48 5.13
December 4.89 4.79 4.85 3.79 3.31 3.55 6.11 7.62 8.60 7.55 4.49 5.72

Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de interés bancarias > Equilibrium interbank interest rate (TIIE)(TIIE) >A 28 días (al cierre del mes)

Source: Own elaboration ( INEGI, 2021)

Source: Own elaboration ( INEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de interés bancarias > Equilibrium interbank interest rate (TIIE)(TIIE) >A 28 días (al cierre del mes)

Graph 7 Equilibrium interbank interest rate, 2010- 2021 (at the end of each year) 

Source: Own elaboration ( INEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de interés bancarias > Equilibrium interbank interest rate (TIIE)(TIIE) >A 28 días (al cierre del mes)

Graph 8 Equilibrium interbank interest rate, January-December 2021 (28-day quote) 

5. CETES RATE OF RETURN

Table 5 CETES rate of return 28day 

Period 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
January 4.49 4.14 4.27 4.15 3.14 2.67 3.08 5.83 7.25 7.95 7.04 4.22
February 4.49 4.04 4.32 4.19 3.16 2.81 3.36 6.06 7.40 7.93 6.91 4.02
March 4.45 4.27 4.24 3.98 3.17 3.04 3.80 6.32 7.47 8.02 6.59 4.08
April 4.44 4.28 4.29 3.82 3.23 2.97 3.74 6.50 7.46 7.78 5.84 4.06
May 4.52 4.31 4.39 3.72 3.28 2.98 3.81 6.56 7.51 8.07 5.38 4.07
June 4.59 4.37 4.34 3.78 3.02 2.96 3.81 6.82 7.64 8.18 4.85 4.03
July 4.60 4.14 4.15 3.85 2.83 2.99 4.21 6.99 7.73 8.15 4.63 4.35
August 4.52 4.05 4.13 3.84 2.77 3.04 4.24 6.94 7.73 7.87 4.50 4.49
September 4.43 4.23 4.17 3.64 2.83 3.10 4.28 6.99 7.69 7.61 4.25 4.69
October 4.03 4.36 4.21 3.39 2.90 3.02 4.69 7.03 7.69 7.62 4.22 4.93
November 3.97 4.35 4.23 3.39 2.85 3.02 5.15 7.02 7.83 7.46 4.28 5.05
December 4.30 4.34 4.05 3.29 2.81 3.14 5.61 7.17 8.02 7.25 4.24 5.49

Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de rendimiento en instrumentos del mercado primario > Certificados de la Tesorería de la Federación (CETES) > 28 días

Source: Own elaboration ( INEGI, 2021 )

Source: Own elaboration ( INEGI, 2021) . Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de rendimiento en instrumentos del mercado primario > Certificados de la Tesorería de la Federación (CETES) > 28 días

Graph 9. CETES rate of return 2010- 2021 (at the end of each year) 

Source: Own elaboration (I NEGI, 2021 ). Route: Financiero y bursátil > Indicadores financieros y bursátiles > Rates de rendimiento en instrumentos del mercado primario > Certificados de la Tesorería de la Federación (CETES) > 28 días

Graph 10. CETES rate of return, January-December del 2021 (at the end of each month) 

6. INVESTMENT UNITS (UDIS)

The UDI is a unit of account of constant real value to denominate credit titles. It does not apply to checks, commercial contracts, or other acts of commerce.

Table 6 Investment units value concerning pesos 

Period 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
January 4.37 4.56 4.73 4.89 5.10 5.29 5.41 5.62 5.97 6.25 6.44 6.64
February 4.41 4.57 4.75 4.92 5.13 5.29 5.43 5.69 6.00 6.25 6.46 6.70
March 4.44 4.59 4.75 4.94 5.15 5.30 5.44 5.71 6.02 6.26 6.49 6.75
April 4.46 4.59 4.75 4.97 5.15 5.32 5.45 5.75 6.03 6.28 6.43 6.79
May 4.43 4.58 4.71 4.96 5.13 5.29 5.42 5.75 6.01 6.27 6.42 6.81
June 4.41 4.55 4.74 4.95 5.13 5.28 5.42 5.75 6.01 6.26 6.44 6.83
July 4.42 4.57 4.77 4.95 5.14 5.28 5.42 5.76 6.04 6.27 6.49 6.87
August 4.43 4.58 4.78 4.95 5.16 5.29 5.44 5.79 6.07 6.29 6.52 6.90
September 4.44 4.59 4.80 4.97 5.18 5.31 5.45 5.82 6.11 6.29 6.55 6.92
October 4.47 4.61 4.83 4.99 5.20 5.33 5.49 5.84 6.13 6.31 6.57 6.97
November 4.50 4.64 4.85 5.02 5.23 5.36 5.53 5.89 6.17 6.35 6.60 7.04
December 4.53 4.69 4.87 5.06 5.27 5.38 5.56 5.93 6.23 6.39 6.61 7.11

Route: Indicadores económicos de coyuntura > Indicadores financieros > Exchange rate del peso respecto al dólar y valor de las UDIS > Valor de las Investment units (UDIS)

Source: Own elaboration ( INEGI, 2021 ).

Source: Own elaboration ( INEGI, 2021 ). Route: Indicadores económicos de coyuntura > Indicadores financieros > Exchange rate del peso respecto al dólar y valor de las UDIS > Valor de las Investment units (UDIS)

Graph 11 Investment units 2010-2021 (At the end of the year) 

Source: Own elaboration ( INEGI, 2021) . Route: Indicadores económicos de coyuntura > Indicadores financieros > Exchange rate del peso respecto al dólar y valor de las UDIS > Valor de las Investment units (UDIS)

Graph 12 Investment units, January-December 2021 

On April 1, 1995, the Decree establishing the obligations corresponding to the UDIS was published in the Official Gazette of the Federation. Since April 4, 1995, the Bank of Mexico publishes in the Official Gazette of the Federation the value in the national currency of the Investment Unit, for each day.

REFERENCES

INEGI. (2021). Banco de Información Económica México: Instituto Nacional de Geografía y Estadística. Link: http://www.inegi.org.mx/sistemas/bie / (consultado el 01 January de 2022) [ Links ]

Blanco, C. & Garman, M. (1998). Nuevos Avances en la Metodología de Valor en Riesgo: Conceptos de VeRdelta y VeRbeta, Revista Análisis Financiero, 75 , 6-18. [ Links ]

Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments , New York: John Wiley. [ Links ]

Padula, E. I. & Bacchini, R. D. (2014). Estudio Comparativo de Metodologías para el Cálculo del Valor A Riesgo: Aplicación al Merval. Revista de Investigación en Modelos Financieros, 2.Links ]

Sharpe, W. (1964). Capital Assets Prices: A Theory of Market Equilibrium Under Conditions of Risk, Journal of Finance, 19 , 425-442. [ Links ]

Creative Commons License Este es un artículo publicado en acceso abierto bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.