SciELO - Scientific Electronic Library Online

 
vol.30Estudio de la discapacidad visual por diabetes mellitus tipo 2 en el adulto mayorElementos causales en la epidemia de padecimientos renales en Sonora índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Acta universitaria

versión On-line ISSN 2007-9621versión impresa ISSN 0188-6266

Acta univ vol.30  México  2020  Epub 22-Oct-2020

https://doi.org/10.15174/au.2020.2123 

Artículos

Length-weight relationship and condition factor of Centropomus viridis (Actinopterygii: Perciforms: Centropomidae) in the north coast of Nayarit

Relación longitud-peso y factor de condición de Centropomus viridis (Actinopterygii: Perciforms: Centropomidae) en la costa norte de Nayarit

José Raúl Tapia Varela1  * 

Deivis Samuel Palacios Salgado2† 

Carlos Alberto Romero-Bañuelos1 

Salvador Ruiz Bernés4 

Roberto Padilla-Noriega3 

José Trinidad Nieto Navarro2 

1Secretario de Investigación y Postgrado, Universidad Autónoma de Nayarit. Col. Centro S/N, Tepic, Nayarit, México. C.P. 63000.

2Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchen, San Blas, Nayarit, México.

3Unidad Académica de Ciencias Químicas, Biológicas y Farmaceúticas, Universidad Autónoma de Nayarit, Tepic, México.

4Unidad Académica de Medicina. Universidad Autónoma de Nayarit, Tepic, México.


Abstract

This study poses two objectives: to determine whether the growth of females and males of the C. viridis is isometric, and whether the commercial fishing changes the condition of snook. The information regarding the length-weight relationship (LWR) is basic for the development of management strategies and conservation of the white snook. The length-weight relationship condition analysis is presented for the snook C. viridis fishery in the north coast of Nayarit. A non-experimental, longitudinal aleatory study was performed. Data was obtained during a six-year period (2010-2015). The weight, total length and sex of 2542 organisms were recorded. The LWR of males from 2010 to 2015 indicated negative allometric growth (p < 0.05), while the females indicated positive allometric growth (p < 0.05). However, the overall analysis LWR for males and females in the whole sampling period (2010-2015) showed negative allometric: b = 2.958 (p < 0.05) and r2 = 0.948. Regarding the analysis of condition, results indicated a value of Kn ≥ 1 in males; females presented a condition lower than 1, which indicated sex-change from male to female. In response to the fishing pressure, the C. viridis has readjusted year after year the minimum size of sex switching, generating slight variations of Kn in females of the C. viridis in the studied area.

Keywords: White snook; Length-Weight Relationship; allometric growth; Centropomus viridis; San Blas; Nayarit

Resumen

Este estudio plantea dos objetivos: determinar si el crecimiento de hembras y machos de Centropomus viridis es isométrico, y si la pesca comercial cambia la condición del róbalo garabato. La información sobre la relación talla-peso (RTP) es básica para el desarrollo de estrategias de manejo y conservación del róbalo. El análisis de relación talla-peso y condición se presenta para la pesquería del robalo C. viridis en la costa norte de Nayarit. Se realizó un estudio aleatorio longitudinal no experimental. Los datos se obtuvieron durante un período de seis años (2010-2015). Se registró la talla el peso y el sexo de 2542 organismos. La RTP de los machos de 2010 a 2015 indicó un crecimiento alométrico negativo (p <0.05), mientras que las hembras indicaron un crecimiento alométrico positivo (p <0.05). Sin embargo, el análisis global LWR para machos y hembras en todo el período de muestreo (2010-2015) mostró alometría negativa: b = 2.958 (p <0.05) y r2 = 0.948. Con respecto al análisis de la condición, los resultados indicaron un valor de Kn ≥ 1 en machos; las hembras presentaron una condición inferior a 1, lo que indicaba que el cambio de sexo de hombre a mujer. En respuesta a la presión de pesca, C. viridis se ha reajustado año tras año el tamaño mínimo de cambio de sexo, generando ligeras variaciones en Kn de hembras de C. viridis en el área estudiada.

Palabras clave : Robalo garabato; Relación Talla Peso; Crecimiento Alometrico; Centropomus viridis; San Blas; Nayarit

Introduction

In the Mexican Pacific Coast, the family Centropomidae is represented by six species of the genus Centropomus, locally known as snook (Rivas, 1986). The fishery for this species constitutes one of the most important economic activities of subsistence in the area (Espino, Cruz & Garcia, 2003). The snook fishery in the north coast of Nayarit mainly includes C. nigrescens, C. medius, C. robalito and C. viridis; the latter is the most abundant and with the highest commercial value in local and international markets (Labastida-Che, Núñez-Orozco & Oviedo-Piamonte, 2013; Ulloa-Ramírez et al., 2008); despite this, there is a lack of studies containing biological and ecological information for the Centropomidae species within the area. Studies concerning the length-weight relationship (LWR) of fish are needed for the evaluation and conservation of the species. Also, this analysis provides information to determine and compare the growth patterns found by sex, season or region (Froese, Tsikliras & Stergiou, 2011; Gaspar, Tobes, Miranda, Leunda & Peláez, 2012). In this study, the LWR and condition factor analyses are presented for C. viridis and the snook fishery estuaries of the National Wetlands belonging to the Biosphere Reserve, Nayarit.

Material and Methods

A non-experimental, longitudinal aleatory study was performed. The biological material was evaluated monthly from February 2010 to July, 2015. The material was collected from artisanal and demersal fisheries in the estuaries in the north coast of Nayarit, Boca del Asadero, Nayarit (21° 38’ 29.44” N and 105° 25’ 38.34” W).

Source: Authors’ own elaboration.

Figure 1 Typical sites of commercial fishing for snook on the north coast of Nayarit. 

Sampling was made using commercial gillnets with mesh sizes of 12.7 cm, 15.24 cm and 20.32 cm, and lengths ranging from 1 km to 1.5 km. Nets were used during 12-hour periods (from 16:00 to 04:00) at 13 m and 22 m depth. Total weight (W) from each sampled specimen was obtained to the nearest ±0.01 g by using a digital balance. Total length (TL) and standard length (SL) were measured using an ichthyometer (±0.1 mm). Sex was detected by direct gonad observation.

The LWR was determined with the following equation: W = a L b , where W is the total weight, L is the total length (Froese & Pauly, 2000; Le Cren, 1951), a is the interception of logarithm, known as the condition factor of fish, and b is the regression slope, which represents the type of growth. If b = 3, then the growth is considered isometric, and when b≠3, it is considered allometric (Ricker, 1975). This can be negative (b < 3) when fish grow more in length, or positive (b > 3) when fish grow more in weight (Froese, 2006). To estimate parameter a and b, a timeline of the potential model on aggregate error was considered (loge (wi) = loge (a) + b loge (Li) + ei) to stabilize the linearized variables and obtain a better model fit (Ogle, 2013).

A t-Student test was used (IC of 95%) to infer the type of growth by the b parameter (Sokal & Rohlf, 1995). Analyses were performed using R programming language with the statistical routines described by Ogle (2013). The calculation of K is made from the relationship between the weight of the fish and its size, with the intention of describing the condition of each species. The equation that describes this relationship is: 𝐾 = 100*𝑊/𝐿𝑏, where 𝐾 is the condition factor of the fish, 𝑊 is the weight in grams, 𝐿 is the size of the fish in mm, 𝑏 is the value of the isometry (b = 3) and 100 is a constant that approaches the value of 𝐾 to unity; this factor of condition is used in fish that have an isometric growth (Froese 2006; Le Cren, 1951). The relative condition factor was calculated for the species that presented growth of allometric type. Le Cren (1951) proposed this calculated index through the following equation: Kn= 𝑊/𝑎*𝐿𝑏. The results of the analysis of the weight relationship of C. viridis show an allometric growth, as recommended by Le Cren (1951) and Froese (2006). The relative condition analysis. 𝐾𝑛 = 𝑊/𝑎*𝐿𝑏 (Le Cren, 1951), it was estimated on a spreadshet.

Results

A total of 2542 organisms were analyzed. The sexual proportion (M:F) was 5.51:1, and the total length varied from 230 mm to 1310 mm (82.13 mm ± 137.9 mm) (Table 1). The male capture registered in the commercial fishing of the snook (C. viridis) from 2010 to 2015 in the coast of Nayarit was much higher than in females; the minimum size of registered females in 2010 was 880 mm, and in 2015 it was 670 mm length.

Table 1 The length-weight relationship parameters of Centropomus viridis in the north coast of Nayarit. 

Total length [mm] Total weight [g] Relation parameters C.F. A
Year Sex N Range Mean ± SD Range Mean ± SD α SE of α b SE of b t-test Kn
2010 F 61 880-1310 1066 ± 84.7 6200-16000 10490 ± 1900 0.000671 0.0002221 2.073 0.071 0.935 * 0.95 -
2010 M 218 230-970 696 ± 154.7 400-6500 2950 ± 1640 0.000028 0.000004 2.697 0.039 0.957 * 1 -
2011 F 114 780-1310 1026 ± 104.9 3300-11000 7320 ± 3080 0.000009 0.000003 2.99 0.086 0.911 * 1 -
2011 M 783 230-1020 787 ± 118 800-4260 4267 ± 1122 0.000021 0.000002 2.764 0.022 0.953 * 1.01 -
2012 F 101 770-1270 989 ± 102.4 4000-23500 8010 ± 2640 0.000011 0.0000049 2.925 0.096 0.903 * 1.01 -
2012 M 694 440-940 815 ± 73.3 700-6800 4000 ± 1062 0.000007 0.000001 3.01 0.032 0 .927 * 1.04 +
2013 F 27 720-1190 981 ± 112.4 2400-14500 7570 ± 2980 0.000002 0.0000015 3.331 0.196 0.92 * 0.82 +
2013 M 131 330-940 796 ± 112.1 200-6200 3620 ± 1280 0.000002 0.0000005 3.27 0.051 0.97 * 1.04 +
2014 F 32 810-1220 1013.7 ± 110.1 4000-16000 9187 ± 3321 0.000003 0.0000018 3.246 0.146 0.941 * 1.07 +
2014 M 105 460-970 722 ± 132.5 620-6000 3131 ± 1540 0.000011 0.0000048 2.904 0.192 0.944 * 1.02 -
2015 F 46 670-1200 946.6 ± 106.7 2800-12000 6423 ± 1863 0.000064 0.0000349 2.525 0.12 0.907 * 0.96 -
2015 M 230 490-990 825 ± 942 800-6800 4224 ± 1154 0.000047 0.0000123 2.578 0.06 0.891 * 1 -
10~15 F 381 670-1310 1002.6 ± 109.4 2400-21000 8.676 ± 3.066 0.000005 0.0000011 3.112 0.048 0.904 * 0.98 +
10~15 M 2161 230-1020 788.4 ± 115.1 200-7000 3.878 ± 1.372 0.000018 0.0000011 2.804 0.014 0.941 * 1.02 -
10~15 A 2542 230-1310 821.3 ± 137.9 200-21000 4.615 ± 2.456 0.000009 0.0000005 2.958 0.013 0.948 * 1.03 -

Source: Authors’ own elaboration.

N = Sample size; a = Proportionality coefficients (intercept); SE of Standard error a = Confidence limits for a; b = Allometry coefficient (slope); SE of b = Standard error for b; r2 = Coefficient of determination and t-tester (*) = p < 0.05.

In Table 1, the LWR was analyzed in the male population with a value of b ≤ 3 and indicated a negative allometric growth (p < 0.05). And the LWR value (b ≥ 3) in females indicated a positive allometric growth (p < 0.05). However, the overall analysis of the LWR for males and females in the whole sampling period (2010-2015) determined a negative allometric growth: b = 2.958 (p < 0.05) and r 2 = 0.948.

The relative condition factor (Kn) covering both sexes was ≥ 1, and the males presented a Kn ≥ 1, while the analysis for the female population indicated a Kn ≤ 1, respectively.

Discussion

In the six years of sampling, the size of the females of C. viridis 21 cm. The plasticity of the hermaphroditism, sequential protandric that the snook present sex-changing from male to female (Álvarez-Lajonchère & Tsuzuki, 2008; Molloy, Goodwin, Côté, Gage & Reynolds, 2007; Taylor, Whittington, Grier & Crabtree, 2000;). Has permitted the snook C. viridis the minimum size of females on average 35 mm per year. the minimum size of women in 2010 was 880 mm, and by 2015 the minimum size was 670 mm. As an adaptation adjustment strategy to balance the proportion M/F. In accordance to Birkeland & Dayton (2005); Munday, Buston & Warner (2006); Molloy et al. (2007); Chiba, Yoshino, Kanaiwa, Kawajiri & Goshima (2012) and Benvenuto, Coscia, Chopelet, Sala-Bozano & Mariani (2017),predicts that plasticity does not act as a buffer against the evolutionary pressure of selective fishing. optimal age (size) at sex-change is attained when the average of males and females becomes equal. Despite the fact that C. viridis has reduced the minimum size of sex change, it has not been able to reach the optimum size of sex change, which balances the M: F ratio. predict that plasticity of the sex-change in the hermaphroditical species does not act as a buffer to the evolutional pressure in the selective fishing even though the readjustment of the first size from the sex-change has not been able to make the C. viridis balance the proportion of sexes.

In this research, a maximum length of 131 cm for C. viridis was recorded, which is 11 cm longer than the previous length reported for this species (Robertson & Allen, 2008). The type of growth has not varied in accordance to the year of sampling and sex, presenting both positive and negative allometric growth. Previous studies based on the standard length (sizes < 94 cm) mention that the growth for C. viridis is isometric (Labastida-Che et al., 2013). An allometric growth has been reported for other species of snook in the Mexican Pacific, such as C. robalito (Nieto-Navarro, Zetina-Rejon & Arreguin-Sanchez, 2010) and C. nigrescens (Sandoval-Huerta, Madrigal-Guridi, Domínguez-Domínguez, Ruiz-Campos & Gonzalez-Acosta, 2015), and in the Mexican Atlantic for C. Parallelus (Zarza, Berruecos, Vásquez & Álvarez, 2006), C. pectinatus (Benavides & Brenes-Rodríguez, 2010), C. undecimalis and C. ensiferus (Gassman, López & Padrón, 2017). The latter resulted similar to this study, where males presented negative and females positive allometry.

The snooks are estuarine-dependent, which is why it is not possible finding them in the surroundings of islands or fishing them ordinarily in the open sea (Camacho & Gadea, 2005). However, the snook are mixohaline species that migrate from salty marine environments to other water masses presenting lower salinity concentrations during their ontogenetic development (Castro-Aguirre, 1999); the type of growth of the individuals analyzed herein could have been affected by reproductive migrations and size structure. Results from an experimental culture of C. parallelus and C. undecimalis at different salinity concentrations (0 ups, 15 ups, 25 ups and 35 ups) indicated that, in freshwater conditions, isometric growth was obtained for both species, while allometric growth was reached as the salinity concentration increased (Zarza et al., 2006). Chaves & Bortolan (2013) determined that in cultured C. parallelus females presented positive allometric growth at salinities of 35 ups, whereas males showed negative allometric growth in salinity conditions of 0 ups.

Regarding the condition factor, Le Cren (1951) noted that values of Kn < 1 indicate that the environment is not suitable for growth or that the population can easily be affected by external factors such as overfishing. The condition factor in the overall analysis for females was 0.98 < 1, this may indicate that a fishing effort could be generating slight variations, changing the condition of the C. viridis population in the studied area.

Conclusion

It is probable that the male population of C. viridis remained in estuarine areas until the first sexual maturity, reaching the neritic zone in the reproductive period and prevailing in the marine environment after becoming female, this would explain the negative allometric growth in males, contrary to the one found in females.

In conclusion, the sex change of the withe snook works as a bio-indicator of the stress generated by the fishing effort in the sexual proportion, it is probable that the high indexes of mortality by the selective fishing not premeditated of males has induced alterations in the proportion M:F. The could affect the reproductive natural process and sex-change from male to female of the snook. In response to the fishing pressure the C. viridis has readjusted year after year the minimum size of sex switching, generating slight variations of Kn in females of the C. viridis in the studied area.

Facing a reality that implies a limited knowledge of the biological-reproductive aspects, fishing and ecologic of the C. viridis in the north coast of Nayarit. It is highly recommended to evaluate the population dynamics, age and growth, sex-change and the selectivity of the fishing arts. This is meant to establish mechanisms that could allow the development of a sustainable management plan and the conservation of C. viridis and species associated to fishery of snook in the mexican Pacific.

Acknowledgements

Authors wish to thank fishermen from Boca del Asadero for their hospitality and for allowing sampling in the area to develop of this study.

References

Alvarez‐Lajonchère, L., & Tsuzuki, M. Y. (2008). A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquaculture Research, 39(7), 684-700. doi: https://doi.org/10.1111/j.1365-2109.2008.01921.x [ Links ]

Benvenuto, C., Coscia, I., Chopelet, J., Sala-Bozano, M., & Mariani, S. (2017). Ecological and evolutionary consequences of alternative sex-change pathways in fish. Scientific Reports, 7(1), 9084. doi: https://doi.org/10.1038/s41598-017-09298-8 [ Links ]

Benavides, R., & Brenes-Rodríguez, C. L. (2010). Análisis hidrográfico e ictiológico de las capturas realizadas con una red de trampa fija en la Laguna de Gandoca, Limón, Costa Rica. Revista de Ciencias Marinas y Costeras ., 2, 9-26. [ Links ]

Birkeland, C., & Dayton, P. K. (2005). The importance in fishery management of leaving the big ones. Trends in Ecology & Evolution, 20(7), 356-358. doi: https://doi.org/10.1016/j.tree.2005.03.015 [ Links ]

Camacho, J., & Gadea, V. (2005). Estudio técnico científico del róbalo en Río San Juan y el Gran Lago de Nica ragua. Managua: Marena. [ Links ]

Castro-Aguirre, J. L. (1999). Ictiofauna estuarino-lagunar y vicaria de México. México: Editorial Limusa. [ Links ]

Chaves, T., & Bortolan, A. (2013). Salinity influence on development and weight-length relationship of the fat snook. Boletim do Instituto de Pesca, 39(4), 423-432. [ Links ]

Chiba, S., Yoshino, K., Kanaiwa, M., Kawajiri, T., & Goshima, S. (2012). Maladaptive sex ratio adjustment by a sex‐changing shrimp in selective‐fishing environments. Journal of Animal Ecology, 82(3), 632-641. doi: https://doi.org/10.1111/1365-2656.12006 [ Links ]

Espino-Barr, E., Cruz-Romero, M., & Garcia-Boa, A. (2003). Peces marinos con valor comercial de la costa de Colima, México, 106 pp. CONABIO, INP, CRIP-Manzanillo, México. [ Links ]

Froese, R. (2006). Cube law, condition factor and weight-length relationships: history, meta‐analysis and recommendations. Journal of applied ichthyology, 22(4), 241-253. doi: https://doi.org/10.1111/j.1439-0426.2006.00805.x [ Links ]

Froese, R., & Pauly, D. (2000). FishBase 2000: Concepts Designs and Data Sources (No. 1594): WorldFish. Philipines: International Center for Living Aquatic resources Management. [ Links ]

Froese, R., Tsikliras, A. C., & Stergiou, K. I. (2011). Editorial note on weight-length relations of fishes. Acta Ichthyologica et Piscatoria, 41(4), 261-263. doi: https://doi.org/10.3750/AIP2011.41.4.01 [ Links ]

Gaspar, S., Tobes, I., Miranda, R., Leunda, P., & Peláez, M. (2012). Length-weight relationships of sixteen freshwater fishes from the Hacha River and its tributaries (Amazon Basin, Caquetá, Colombia). Journal of applied ichthyology , 28(4), 667-670. doi: https://doi.org/10.1111/j.1439-0426.2011.01928.x [ Links ]

Gassman, J., López, H., & Padrón, D. (2017). Reproducción de los róbalos Centropomus undecimalis y C. ensiferus (Perciformes: Centropomidae) en una laguna costera tropical. Revista de Biología Tropical, 65(1), 181-194. doi: http://dx.doi.org/10.15517/rbt.v65i1.23614 [ Links ]

Labastida-Che, A., Núñez-Orozco, A. L., & Oviedo-Piamonte, J. A. (2013). Aspectos biológicos del robalo hocicudo Centropomus viridis, en el sistema lagunar Chantuto-Panzacola, Chiapas, México. Ciencia Pesquera, 21(2), 21-28. [ Links ]

Le Cren, E. (1951). The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology 20(2), 201-219. doi: https://doi.org/10.2307/1540 [ Links ]

Molloy, P. P., Goodwin, N. B., Côté, I. M., Gage, M. J. G., & Reynolds, J. D. (2007). Predicting the effects of exploitation on male‐first sex‐changing fish. Animal Conservation, 10(1), 30-38. doi: https://doi.org/10.1111/j.1469-1795.2006.00065.x [ Links ]

Munday, P. L., Buston, P. M., & Warner, R. R. (2006). Diversity and flexibility of sex-change strategies in animals. Trends in Ecology & Evolution , 21(2), 89-95. doi: https://doi.org/10.1016/j.tree.2005.10.020 [ Links ]

Nieto-Navarro, J., Zetina-Rejon, M., & Arreguin-Sanchez, F. (2010). Length-weight relationship of demersal fish from the eastern coast of the mouth of the Gulf of California. Journal of Fisheries and Aquatic Science, 5(6), 494-502. [ Links ]

Ogle, D. (2013). fishR vignette-fish condition and relative weights. Retrieved from Ashland, Wisconsin: https://fishr.files.wordpress.com/2013/04/relativeweight.pdfLinks ]

Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin Fisheries Research Board of Canada, 191, 1-382. [ Links ]

Rivas, L. R. (1986). Systematic review of the perciform fishes of the genus Centropomus. Copeia, 1986(3), 579-611. doi: https://doi.org/10.2307/1444940 [ Links ]

Robertson, D., & Allen, G. (2008). Shorefishes of the Tropical Eastern Pacific online information system. Version 1.0 (2008). Smithsonian Tropical Research Institute, Balboa, Panamá. In. [ Links ]

Sandoval-Huerta, E. R., Madrigal-Guridi, X., Domínguez-Domínguez, O., Ruiz-Campos, G., & Gonzalez-Acosta, A. F. (2015). Length-weight and length-length relations for 14 fish species from the central Mexican pacific coast. Acta Ichthyologica et Piscatoria , 45(2), 199-201. [ Links ]

Sokal, R., & Rohlf, F. (1995). Biometry: the principles and practices of statistics in biological research (3rd Ed.). New York: WH Freeman. [ Links ]

Taylor, R. G., Whittington, J. A., Grier, H. J., & Crabtree, R. E. (2000). Age, growth, maturation, and protandric sex reversal in common snook, Centropomus undecimalis, from the east and west coasts of South Florida. Fishery Bulletin, 98(3), 612. [ Links ]

Ulloa-Ramírez, P., Patiño-Valencia, J., Guevara-Rascado, M., Hernández-Ventura, S., Sánchez-Regalado, R., & Pérez-Velázquez, A. (2008). Peces marinos de valor comercial del estado de Nayarit, México. Mexico: Instituto Nacional de Pesca, Nayarit, 91. [ Links ]

Zarza, E. A., Berruecos, J. M., Vásquez, C., & Álvarez, P. (2006). Cultivo experimental de Robalo Centropomus undecimalis (Bloch, 1792) y Chucumite Centropomus parallelus (Poey, 1860)(Perciformes: Centropomidae) en agua dulce en Veterinaria México, 37(3), 327-333. [ Links ]

Como citar: Tapia Varela, J. R., Palacios Salgado, D. S., Romero-Bañuelos, C. A., Ruiz Bernés, S., Padilla-Noriega, R., & Nieto Navarro, J. T. (2020). Length-weight relationship and condition factor of Centropomus viridis (Actinopterygii: Perciforms: Centropomidae) in the north coast of Nayarit. Acta Universitaria 30, e2123. doi. http://doi.org/10.15174.au.2020.2123

Received: October 31, 2017; Accepted: February 21, 2020; Published: March 25, 2020

*Corresponding autor. raultapia539@hotmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License