Introducción
Las infecciones intestinales causadas por Salmonella enterica y los distintos patotipos de E. coli, como los productores de las toxinas tipo Shiga (STEC), constituyen un problema de salud pública a escala global1. Ambos patógenos suelen contaminar la carne de diferentes especies, entre ellas la de bovino2,3, el segundo tipo de carne de mayor consumo en México4. Por ello, la caracterización de las cepas circulantes de S. enterica y E. coli en la cadena productiva de bovinos de carne es de vital importancia para mejorar la gestión de los riesgos asociados con ambos patógenos.
La mayoría de los estudios realizados en este campo en México se concentran en un solo punto de la cadena productiva. Por ejemplo, varios autores han observado frecuencias moderadas (8 a 15 %) de Salmonella spp. en canales de bovino5-7, aunque no en todos los casos se reportan los serotipos representados. En estudios más completos se reportan niveles de contaminación más elevados (25 a 100 %) en piel, heces, linfonodos, canales no refrigeradas y carne8-10, detectándose predominancia de ciertos serotipos en algunas de las matrices analizadas. Sin embargo, la comparación entre estudios es difícil, debido a variaciones en cuanto al tipo de muestra analizada, segmento de la cadena productiva, metodología de análisis empleada, así como zona geográfica, sistema de producción animal y condiciones sanitarias del proceso en estudio.
En el caso de E. coli, la situación es similar. La mayoría de los estudios se enfoca en un segmento de la cadena productiva y en cepas STEC entero-hemorrágicas, tales como E. coli O157:H76,11,12. Aunque en estudios previos se ha reportado baja frecuencia (1a 3 %) de cepas patógenas de E. coli en canales y en heces de bovinos11-13, no se ha explorado a fondo la distribución de éstas a lo largo de la cadena productiva. Esta información puede contribuir a identificar patrones de diseminación en diferentes procesos y en distintas zonas geográficas, así como medidas encaminadas a garantizar la inocuidad de los alimentos y a proteger la salud pública. Por tanto, el presente estudio tiene como objetivo determinar la frecuencia de contaminación y diversidad de serotipos de S. enterica y E. coli en un rastro Tipo Inspección Federal con integración horizontal de los procesos de matanza y deshuese de bovinos.
Material y métodos
Diseño del estudio y determinación del tamaño de muestra
Se realizó un muestreo en tres etapas del proceso de transformación del bovino desde la matanza hasta el deshuese: 1) contenido rectal obtenido después de la evisceración, 2) canales calientes y 3) cortes primarios. Cada etapa se consideró como un muestreo independiente, pues no fue posible determinar con anticipación el destino de los animales, los cuales se vendieron como canales enteras en algunos casos y en otros como cortes primarios. El tamaño de muestra para cada etapa a evaluar se calculó mediante la fórmula estadística para determinar el tamaño de muestra para una proporción de una población, cuando no se conoce el número de elementos en esa población14:
Con dicha fórmula se obtuvo un tamaño de muestra por etapa de 96, el cual se redondeó a 100, para un total de 300 muestras en el estudio. El estudio se realizó en septiembre de 2013, en una empresa integrada de producción de carne de bovino situada en Mexicali, Baja California, con operaciones de engorda intensiva en corral, matanza y deshuese. Las canales muestreadas provenían de bovinos machos enteros, cruzas de Bos indicus, con una edad promedio de 24 a 30 meses, originarios de ocho estados de la República Mexicana y finalizados durante un promedio de 190 días en la engorda. La empresa fue seleccionada por sus características integrales, las cuales permiten tener un modelo de la cadena productiva en un solo sitio. El rastro se encuentra a 1 km de los corrales de engorda y tiene capacidad para procesar 300 bovinos por turno de 8 h.
Toma de muestras
Contenido rectal
Las muestras de heces se tomaron del recto, después de la evisceración, a los 20 min post mortem. De cada recto se tomaron aproximadamente 100 g de heces. Para ello, se retuvieron momentáneamente los paquetes de vísceras en la rampa de eviscerado, se abrió la ligadura del recto y se usaron guantes nuevos de nitrilo para recolectar las muestras de heces, las cuales se depositaron en bolsas estériles y se mantuvieron en hieleras con geles refrigerantes (
Canales sin refrigerar
Se empleó la metodología utilizada por el Departamento de Agricultura de los Estados Unidos en sus estudios microbiológicos de línea base para la especie bovina15 con ligeras modificaciones. En lugar de canales refrigeradas, se muestrearon canales calientes y se empleó el agua peptonada de una misma canal para la detección de E. coli y S. enterica. En todos los casos, se muestrearon medias canales (lado derecho) empleando esponjas pre-humedecidas con 10 ml de agua peptonada tamponada y marcos estériles desechables de 10 x 10 cm2 (Meat/Turkey Carcass Sampling Kit, NASCO®, EEUU) en tres puntos de la canal (pierna, falda y pecho) con una superficie total de muestreo de 300 cm2 por canal.
Cortes
En la sala de cortes, una vez obtenidos los cortes primarios y antes del empacado, se seleccionaron al azar piernas, faldas y pechos para la toma de muestras. Para ello, se utilizó el mismo método descrito anteriormente para las canales, excepto porque se tomó un solo marco de 100 cm2 por corte.
Análisis microbiológicos
Una vez tomadas las muestras, las esponjas se sellaron en bolsas estériles de plástico y se mantuvieron en hieleras con geles refrigerantes (
Identificación bioquímica
Las cepas de Salmonella se identificaron con substratos preparados en el laboratorio, de acuerdo con los resultados de las siguientes pruebas16: triple azúcar hierro (TSI, por sus siglas inglesas); ácido sulfhídrico, indol y motilidad (SIM, por sus siglas en inglés); citrato de Simmons; urea; rojo de metilo-Vosges-Proskauer; malonato-fenilalanina; gluconato; enzimas descarboxilasas de arginina, ornitina, lisina y testigo. Se utilizó Salmonella enterica subsp. enterica ser. Typhimurium ST19, como control positivo, la cual se obtuvo del cepario del Hospital General Dr. Manuel Gea González, de la Ciudad de México, aislada y caracterizada por VITEK 2 (bioMerieiux, Francia)17. Para E. coli se usaron las mismas pruebas, excepto la de descarboxilación de aminoácidos16 y se empleó como control positivo una cepa de E. coli K12.
Identificación molecular
La identificación molecular se realizó mediante PCR de punto final, empleando iniciadores de secuencias específicas de genes típicos de cada especie (Cuadro 1). El ADN genómico se extrajo con el kit “DNeasy Blood & Tissue Kit” (Qiagen, Inc., USA), según instrucciones del fabricante, a partir de las cepas puras, previamente refrescadas en caldo tripticasa soya (MCD Lab®, PRONADISA-CONDA®, España) por 18 a 24 h. Para S. enterica se utilizó el gen invA18 y para E. coli, el gen gadA19, el cual codifica para la subunidad alfa de la glutamato descarboxilasa, perteneciente al sistema de resistencia al estrés ácido en E. coli. Además, para identificar los patotipos presentes, se incluyeron seis genes asociados con cepas enteropatogénicas (EPEC), enterotoxigénicas (ETEC) y productoras de toxina tipo Shiga (STEC). Entre estos, se seleccionó el gen eaeA, el cual codifica para una intimina, proteína importante para la adhesión mediante el receptor translocado de intimina20 y se encuentra presente en el genoma de los patotipos EPEC y STEC. Por su parte, los genes codificantes de las toxinas tipo Shiga 1 (stx1) y 2 (stx2) suelen presentarse en las cepas STEC, las cuales manifiestan el mismo fenotipo cuando portan uno de estos genes o ambos20. También se investigó la presencia de genes codificantes para las toxinas termoestable (estA) y termolábil (eltA), asociados con cepas ETEC21; así como el gen bfp (del inglés bundle forming pilus), codificante de los pili formadores de penachos, involucrados en la adhesión al epitelio intestinal, el cual se encuentra en el genoma de cepas EPEC2. Las reacciones de PCR se realizaron en un volumen total de 25 μl y se utilizaron los reactivos del Top Taq Master Mix Kit (QIAGEN®, USA) con las siguientes concentraciones finales: 1.25 Unidades de Taq Polimerasa, 1.5 mM MgCl2, 1x Buffer para PCR, 200 μM de cada dNTP. Las condiciones empleadas para cada reacción fueron las mismas descritas en publicaciones anteriores (Cuadro 1).
Patógeno | Gen | Fragmento amplificado (pb) | Secuencia de Iniciadores 5´➜3´ | Ref. |
---|---|---|---|---|
Salmonella spp. | invA | 284 | 139 GTGAAATTATCGCCACGTTCGGGCAA 141 TCATCGCACCGTCAAAGGAACC |
(19) |
gadA | 670 | gadA1: ACCTGCGTTGCGTAAATA gadA2: GGGCGGGAGAAGTTGATG |
(20) | |
eaeA | 890 | EAE1: GTGGCGAATACTGGCGAGACT EAE2: CCCCATTCTTTTTCACCGTCG |
(21) | |
E. coli | stx1 | 582 | STX1F: ACACTGGATGATCTCAGTGG STX1R: CTGAATCCCCCTCCATTATG |
(21) |
stx2 | 255 | STX2F: GGCACTGTCTGAAACTGCTCC STX2R: TCGCCAGTTATCTGACATTCTG |
(21) | |
estA | 190 | STa-F CTAATGTTGGCAATTTTTATTTCTGTA STa-R AGGATTACAACAAAGTTCACAGCAGTAA |
(22) | |
eltA | 132 | LT-1 AGCAGGTTTCCCACCGGATCACCA LT-2 GTGCTCAGATTCTGGGTCTC |
(22) | |
bfp | 324 | EP1, CAATGGTGCTTGCGCTTGCT EP2, GCCGCTTTATCCAACCTGGT |
(2) |
Los productos de amplificación por PCR fueron procesados por electroforesis en geles de agarosa (SeaKem® LE Agarose, Lonza, ME, USA) al 1% para los productos de alto peso molecular (gadA, eaeA, stx1) y al 2% para los más pequeños (eltA y estA). Los geles se corrieron en buffer tris/borato/EDTA (TBE 1x), a 80 V por 50 min. Se usó SYBR Safe DNA Gel Stain (Invitrogen, USA) para revelar los fragmentos de ADN. La visualización y digitalización de imágenes se realizó en un fotodocumentador Gel Logic 2200 (Kodak, USA) con el software Care Stream® (Carestream Health, Inc., USA). Se utilizaron como controles positivos las mismas cepas de ambos patógenos referidas en la identificación bioquímica. Además, para la identificación de los patotipos de E. coli se incluyeron como controles cepas de cada uno de los patotipos investigados (EPEC, ETEC y STEC), también provenientes del cepario del laboratorio del Hospital General Dr. Manuel Gea González, previamente identificados por medio del sistema VITEK 2.
Serotipificación
Salmonella spp.
Tipificación serológica del antígeno somático (O). La identificación serológica de las cepas de Salmonella se realizó de acuerdo al esquema de Kauffmann-White22,23. La obtención del antígeno somático (O) se llevó a cabo hirviendo los cultivos bacterianos (
Tipificación serológica del antígeno flagelar (H). Este antígeno se obtuvo inoculando las cepas en medio semisólido en tubos de Cragie´s y resembrando en caldo nutritivo. El antígeno H de fase I y II de las cepas se determinó utilizando el sistema de antisueros-H Spicer-Edwars (DIFCO) y sueros monovalentes (específicos) de los serogrupos A, B, C, D, E y F.
Aunque la determinación del serotipo no se realizó en un laboratorio de referencia, el genoma completo de las cepas obtenidas fue secuenciado, como parte de otra investigación24. Ello permitió confirmar, mediante análisis in silico de las secuencias crudas, los resultados preliminares de serotipificación y determinar el serotipo de las cepas no tipificables por métodos bioquímicos.
E. coli
Las cepas de E. coli fueron serotipificadas utilizando microaglutinación en placa de 96 pozos y 187 sueros anti-antígeno somático (O) y 53 sueros anti-antígeno flagelar (H) obtenidos en conejo (SERUNAM), empleando el método descrito por Ørskov y Ørskov25, con modificaciones menores.
Clasificación por filogrupos. Como ciertos filogrupos de E. coli están asociados con animales o con humanos, así como con diferentes patotipos de la bacteria, se decidió realizar la clasificación en grupos filogenéticos mediante PCR, según el esquema de Clermont26. Esta técnica permite dividir a los aislamientos de E. coli en siete grupos filogenéticos característicos de la especie (A, B1, B2, C, D, E y F) y un grupo adicional, correspondiente al Clado Críptico I. La prueba se realizó mediante una reacción de PCR cuádruple inicial, para detectar los genes arpA, chuA, yjaA y TSPE4.C2. Además, en caso de obtener resultados sugerentes de filogrupos E y C, se realiza un PCR dúplex adicional dirigida hacia una variante alélica del gen arpA (específica del grupo E) o bien, a una variante alélica del gen trpA (específica para el grupo C), más un control interno dirigido para el gen trpBA. Las reacciones se llevaron a cabo directamente, a partir de colonias frescas crecidas 24 h en agar TSA. Las reacciones de PCR se realizaron a un volumen de 25 μl, bajo las mismas condiciones descritas previamente26. Los productos de amplificación por PCR fueron procesados por electroforesis en gel de agarosa (SeaKem® LE Agarose, Lonza, EEUU) al 2%, corriendo a voltaje constante de 80 V por 50 min. La visualización y digitalización de imágenes se realizó de la misma forma antes descrita para S. enterica. Se incluyeron como controles positivos E. coli K12 y cepas representativas de cada uno de los filogrupos de E. coli, provenientes del cepario del Hospital General Dr. Manuel Gea González, clasificadas previamente según el esquema de Clermont26.
Análisis de la información
Se calculó la frecuencia de positividad para ambos patógenos en las muestras evaluadas, así como la concentración, sólo en el caso de E. coli. Se utilizó la prueba de Ji cuadrada y la razón de momios para detectar asociación entre la positividad a los patógenos y el tipo de muestra
Resultados
De las muestras analizadas (300 para Salmonella spp. y 200 para E. coli) se obtuvieron 84 aislamientos, 39 de ellos fueron identificados como Salmonella spp. y otros 45 como E. coli, con una frecuencia global de 13.0 y 22.5 %, respectivamente. Sólo una de las muestras, proveniente de una canal, fue positiva para ambas bacterias.
Salmonella spp.
La frecuencia de contaminación con Salmonella spp. fue de 34 % en heces y de 3 y 2 % en canales y en cortes, respectivamente (Figura 1). Todos los aislamientos obtenidos fueron identificados como Salmonella spp. mediante pruebas bioquímicas y PCR. Inicialmente se habían aislado otras dos cepas, con resultados positivos basados en pruebas bioquímicas y en PCR, pero resultaron no tipificables. No obstante, al confirmar el serotipo, por análisis in silico con las lecturas crudas de la secuenciación del genoma, estas dos cepas fueron descartadas, pues se identificaron como Pseudomonas putida, una especie también portadora del gen invA27.
La prueba de Ji cuadrada evidenció la existencia de una fuerte asociación (
Tipo de muestra |
n | % positividad |
Razón de momios |
I. C. al 95%1 |
|
P2 |
---|---|---|---|---|---|---|
Salmonella spp. | ||||||
Heces | 100 | 34 | 20.1 | 7.5-53.5 | 58.5 | <0.0001 |
Canales/cortes | 200 | 5 | ||||
E. coli | ||||||
Canales | 100 | 34 | 4.2 | 2.0-8.8 | 15.2 | <0.0001 |
Cortes | 100 | 11 |
1Intervalo de confianza al 95% para la razón de momios.
2Nivel de significancia (probabilidad).
Con respecto a los serotipos presentes (Figura 2), se logró tipificar 35 de los 39 aislamientos por métodos serológicos. Las otras cuatro cepas sólo pudieron ser caracterizadas parcialmente, pues presentaron un antígeno O rugoso, por lo que sólo fue posible obtener una fórmula antigénica parcial, basada en el antígeno flagelar. No obstante, el análisis in silico, con las lecturas crudas de secuenciación genómica completa reportado en otra investigación24, permitió determinar el serotipo del 100 % de los aislamientos. En total, se identificaron cinco serovariedades: Bergen (n= 1), Reading (n= 2), Muenster (n= 3), Newport (n= 4) y Montevideo (n= 29). Todos los aislamientos correspondientes al serotipo Montevideo fueron monofásicos para el antígeno H, aunque las fórmulas antigénicas permitieron identificar dos subgrupos dentro de este serotipo, 22 de ellos provenientes de heces, canales y cortes, con la fórmula 6,7:g,m,s:-. Las siete cepas restantes, todas provenientes de heces, presentaron la fórmula 6,7:g,m,p,s:-.
La distribución de serotipos por clase de muestra evidenció la presencia de Salmonella enterica subsp. enterica ser. Montevideo en todas las matrices analizadas. Por el contrario, las cepas de Salmonella enterica subsp. enterica ser. Newport y Reading, detectadas en menor frecuencia que Salmonella Montevideo, sólo se detectaron en las heces (Figura 2).
E. coli
E. coli se encontró en 34 % de las canales y en 11 % de los cortes. Se evidenció una fuerte asociación (
En los cortes, las muestras positivas se distribuyeron de forma relativamente homogénea, obteniéndose cinco cepas del pecho, tres de la falda y tres de la pierna. La concentración de esta bacteria fue baja, tanto en canales como en cortes, con valores entre 1 y 8 UFC cm-2. De los 45 aislamientos obtenidos, identificados mediante placas 3M petrifilm y CHROMAgar ECC, 41 mostraron un fenotipo característico de la especie. Las cuatro cepas restantes, todas provenientes de canales, presentaron resultados atípicos; tres de ellas indol negativas y con lenta fermentación de lactosa y una más resultó positiva a citrato, malonato y celobiosa. No obstante, todas las cepas fueron confirmadas molecularmente por PCR, empleando el gen gadA como marcador taxonómico.
Se identificaron total o parcialmente 31 serotipos de E. coli (Cuadro 3). Los serogrupos más frecuentes fueron O8 (29%) y O71 (19.4%) y el serotipo más comúnmente encontrado fue el O1:H6 (9.7 %).
Tipo de muestra | n | Serotipo |
---|---|---|
Canal | 1 3 1 3 1 1 1 1 1 1 5 1 1 1 |
O28ab:- -:H30 -:H32 O1:H6 O113:- O154:H21 O156:- O166:H21 O32:- O6:- O8:- O8:H19 O8:H2 O8:H21 |
Pierna | 1 | -:H32 |
Pecho | 1 1 2 1 |
O124:- O71:- O71:H12 O8:H8 |
Falda | 1 2 |
O7:H39 O71:H12 |
Los grupos filogenéticos predominantes fueron A (60 %) y B1 (26.7 %), el grupo B2 estuvo ausente y los grupos C y D se presentaron en frecuencias bajas (2.2 y 6.7 %). Hubo dos cepas con resultados no concluyentes, por lo cual no se asignaron a un filogrupo. Resultó interesante observar cómo algunos serogrupos estuvieron fuertemente asociados con ciertos grupos filogenéticos. En el serogrupo O8, 8 de 9 cepas pertenecen al filogrupo B1. De igual forma, 4 de 5 cepas del serogrupo O71 pertenecen al filogrupo A y todas las cepas del serogrupo O1 pertenecen al filogrupo D (Figura 3).
Discusión
En varios países desarrollados, con sistemas de explotación intensiva de ganado bovino similares a los que existen en naciones en desarrollo, como México, los niveles de contaminación con Salmonella spp. suelen ser bajos, tanto en canales y carne como en muestras de heces28-30. Sin embargo, en este trabajo se observó una frecuencia moderadamente alta de contaminación en heces, la cual coincide con la reportada en otros rastros TIF del país9. Esto indica que, en México, las granjas de bovinos de engorda pueden constituir un importante reservorio de este patógeno. Sin duda, esto representa un desafío considerable para las intervenciones aplicadas durante la matanza, donde se reduce drásticamente la contaminación de las canales en relación con las excretas, pero no alcanzan a controlar por completo el patógeno. Asimismo, Salmonella también fue detectada en cortes primarios, evidencia del potencial de este organismo para diseminarse a lo largo de la cadena productiva. Esto se demuestra al detectar cepas de un mismo serotipo en heces, canales y cortes. Además, los resultados son similares a los de estudios previos (2 a 30 % de positividad a Salmonella) en muestras de carne en supermercados31,32, los cuales sólo expenden carne proveniente de rastros TIF. Esta situación implica un panorama epidemiológico más preocupante en las cadenas de comercialización asociadas con rastros municipales, los cuales carecen de la infraestructura y de las condiciones sanitarias existentes en rastros TIF33. De hecho, la frecuencia de positividad a Salmonella en puntos de venta de carne de rastros municipales por lo general supera el 50%10,34.
Lo analizado hasta el momento evidencia la necesidad de reforzar las medidas de control de Salmonella spp. en animales vivos, ya que las intervenciones aplicadas en granja son limitadas. En este sentido, la evaluación de la prevalencia de Salmonella spp. en los becerros destinados a las granjas de engorda, el monitoreo de animales infectados, su manejo separado y así la detección de posibles reservorios del patógeno, son sólo algunas de las medidas favorables para disminuir el porcentaje de animales recibidos en el rastro portadores de esta bacteria.
Con respecto a los serotipos detectados, todos han sido relacionados previamente con infecciones humanas en México35, por lo cual el riesgo de estas cepas para la salud pública no debe minimizarse. El claro predominio de Salmonella Montevideo en los procesos estudiados es notorio, además de sorpresivo, tomando en cuenta que la empresa participante engorda animales provienentes de ocho Estados del país. También resulta interesante la ausencia de serotipos anteriormente comunes en muestras asociadas con ganado bovino en México, tales como Typhimurium, Anatum y Agona, entre otros36. Aunque se ha reportado una distribución variable de serotipos de Salmonella spp. en función del tiempo, así como entre zonas geográficas y estudios, la predominancia de Salmonella Montevideo en la muestra estudiada es consistente con la creciente prevalencia de este serotipo en América del Norte37,38. Asimismo, en estudios recientes realizados en México se reportan serotipos como Montevideo y Reading, pero no Typhimurium, en cepas obtenidas de heces, canales y linfonodos de bovinos(8, 9). En cualquier caso, resulta difícil determinar los factores asociados con el predominio de ciertas cepas en sistemas de producción animal sin recurrir a estudios moleculares en los cuales se aborde la diversidad genética de las poblaciones, así como la presencia de genes asociados con virulencia, persistencia ambiental e infecciones subclínicas. No obstante, los resultados indican que bovinos aparentemente sanos pueden portar Salmonella spp. en frecuencias moderadamente altas, así como la capacidad del patógeno para diseminarse más allá del proceso de matanza y faenado, con los riesgos consecuentes en términos de inocuidad de alimentos.
En relación con E. coli, aunque se encontró con una frecuencia similar a la de Salmonella en canales y en un porcentaje más elevado en cortes, esta bacteria se presentó en bajas concentraciones (<8 UFC cm-2). A pesar de que E. coli es parte de la microbiota intestinal, las intervenciones aplicadas en el rastro lograron reducir tres veces la frecuencia de esta bacteria en los cortes, en los cuales se observó una menor probabilidad de encontrar muestras positivas en relación con las canales. Además, al parecer existe en el país una escasa circulación de cepas patógenas en bovinos, a diferencia de otros países, como Estados Unidos de América, en los que éstas se consideran un problema de salud pública39. Así lo demostró la ausencia de factores de virulencia asociados con los patotipos STEC, EPEC y ETEC en las muestras estudiadas. Estos hallazgos coinciden con investigaciones previas13 en las que se detectaron serovariedades (O157 y no O157) asociadas con cepas STEC (n= 146), pero sólo dos de éstas portaban los factores de virulencia característicos. Esta tendencia se mantiene en estudios posteriores, en los cuales se reportan tasas bajas (<1 %) de contaminación con cepas patógenas de E. coli en canales y carne molida de bovinos en México9,40,41. Tal comportamiento podría obedecer a múltiples factores. Entre estos, el fotoperíodo, más largo durante el verano en los países situados más al norte, se ha considerado como responsable del marcado efecto estacional en la prevalencia de E. coli patogénica en ganado bovino en estas naciones. Otros autores han sugerido que la circulación de otras enterobacterias, con reactividad cruzada de antígenos somáticos (O), en las poblaciones bovinas de México, podría ser un factor de selección negativa de patotipos de E. coli42. Ello coincide con el alto porcentaje de muestras de suero bovino, proveniente de animales aparentemente sanos, con respuesta bactericida contra E. coli O157 (71 %) en hatos del centro de México43.
En cuanto a los filogrupos de E. coli identificados, el predominio de los grupos A y B1 es consistente con lo comúnmente observado en cepas de origen animal44,45. En línea con la ausencia de genes de virulencia asociados con patotipos, solamente una cepa fue clasificada en el grupo C, al cual pertenecen otras cepas STEC de origen animal44,46. No obstante, prácticamente todos los serotipos identificados han sido asociados con los patotipos STEC o ETEC, ambos de importancia en enfermedades transmitidas por alimentos47-49. Aunque no se ha estudiado el riesgo a la salud en cepas de serotipos carentes de genes de virulencia, éste no debe descartarse del todo, puesto que cepas no patógenas podrían adquirir dichos factores mediante la incorporación de plásmidos y/o fagos50,51, un área donde se requiere de más investigación.
Conclusiones e implicaciones
En este estudio se comprobó que más de la tercera parte de los bovinos aprobados para la matanza portan diferentes serotipos de Salmonella enterica en las heces, a pesar de ser animales aparentemente sanos. Además, los resultados evidencian la capacidad del patógeno para diseminarse hacia los siguientes segmentos de la cadena productiva, con los riesgos consecuentes para la salud pública. De ahí la importancia de realizar estudios posteriores sobre los factores genéticos de S. enterica asociados con el establecimiento de infecciones subclínicas en el bovino, así como con su persistencia en las poblaciones ganaderas. Por otra parte, los resultados para E. coli evidencian, al igual que en otras zonas del país, una escasa circulación de cepas patógenas de E. coli en canales y cortes de bovino. No obstante, las muestras analizadas provienen de un solo rastro y el alcance del presente trabajo, para E. coli, no considera muestras de piel o de heces, en las cuales existe mayor probabilidad de encontrar cepas patógenas.