SciELO - Scientific Electronic Library Online

 
vol.67 issue4Development of a Hybrid Vehicular Prototype with H2/air PEMFC Stack and Li-Ion Battery ModuleChemical Characterization and Antioxidant Evaluation of Young and Aged Wines from Aguascalientes and Queretaro author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

Abstract

AVILA-GUTIERREZ, Mario; GUTIERREZ-PORTOCARRERO, Salvador; CORONA-ELIZARRARAS, Luis  and  ALPUCHE-AVILES, Mario A.. A Practical and Instructive Approach to Purify Acetonitrile for a Wide Electrochemical Window. J. Mex. Chem. Soc [online]. 2023, vol.67, n.4, pp.393-402.  Epub Apr 26, 2024. ISSN 1870-249X.  https://doi.org/10.29356/jmcs.v67i4.2013.

Because of its large electrochemical window, acetonitrile (MeCN) is one of the most widely used solvents in electrochemistry. It is a suitable solvent for nonaqueous electrolytes that allows studies of cathodic and anodic processes, but electrolyte purification remains challenging. As received, the high-performance liquid chromatography (HPLC) grade is unsuitable for most electroanalytical applications. We present an approach to optimize the purification of HPLC-grade acetonitrile to yield a tetrabutylammonium perchlorate (TBAP)/MeCN electrolyte for experiments in nonaqueous media. We used cyclic voltammetry (CV) to show the background due to impurities and to guide the experimental design to a background current acceptable for CVs of a 1 mM typical concentration of a redox-active molecule. We use 3A molecular sieves, followed by distillation over CaH2 with a final treatment with Al2O3. The optimized procedure yields CH3CN with small background currents, increasing the signal-to-noise ratio and minimizing chemical complications over a wide potential window. Our approach includes discriminating between impurities in the solvent and electrolyte salts; for TBAP, we recrystallize from ethyl acetate and 95 % ethanol. The process and theoretical guidelines apply to other nonaqueous electrolytes dealing with electroactive impurities, including organic molecules, oxygen, and water.

Keywords : Acetonitrile purification; electrolyte purification; electrochemical window; nonaqueous electrolytes; CH3CN.

        · abstract in Spanish     · text in English