SciELO - Scientific Electronic Library Online

 
vol.49 issue1Efecto de la quiralidad sobre solitones polarizados en un medio anisótropoVane rheometry of an aqueous solution of worm-like micelles author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.49 n.1 México Feb. 2003

 

Investigación

 

Remarks on noncommutative solitons

 

H. García-Compeán* and J. Moreno**

 

Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000, México D.F., México. e-mail: *compean@fis.cinvestav.mx, **jmoreno@fis.cinvestav.mx

 

Recibido el 11 de abril de 2002.
Aceptado el 18 de septiembre de 2002.

 

Abstract

In the first part of this work we consider an unstable non-BPS Dp — p—brane pair in Type II superstring theory. Turning on a background NS-NS B—field (constant and nonzero along two spatial directions), we show that the tachyon responsible for the unstability has a complex GMS solitonic solution, which is interpreted as the low energy remnant of the resulting D(p — 2)—brane. In the second part, we apply these results to construct the noncommutative soliton analogous of Witten's superconducting string. This is done by considering the complex GMS soliton arising from the D3 3—brane annihilation in Type IIB superstring theory. In the presence of left-handed fermions, we apply the Weyl-Wigner-Moyal correspondence and the bosonization technique to show that this object behaves like a superconducting wire.

Keywords: Non-BPS branes, noncommutative soliton, superconducting string.

 

Resumen

En la primera parte de este trabajo consideramos un par inestable de D-branas no-BPS, Dp — p, en la teoría de supercuerdas tipo II. Considerando un campo de fondo B NS-NS (constante y diferente de cero a lo largo de dos direcciones espaciales), mostramos que el taquión responsable de la inestabilidad corresponde a una solución solitónica compleja del tipo GMS, la cual puede ser interpretada como el remanente de bajas energías de la D(p— 2) resultante. En la segunda parte, aplicamos estos resultados para construir un solitón noconmutativo análogo a la cuerda superconductora de Witten. Esto se hace considerando un solitón complejo GMS que proviene de la aniquilación de un par D3 3 en la teoría de supercuerdas tipo IIB. En la presencia de fermiones izquierdos, aplicamos la correspondencia de Weyl-Wigner-Moyal y la técnica de bosonización para mostrar que este objeto se comporta como un alambre superconductor.

Descriptores: Branas no-BPS, solitones noconmutativos, cuerdas superconductoras.

 

PACS: 11.10.-z; 11.25.-w; 11.27.+d

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We are greatful to A. Güijosa, O. Loaiza-Brito and M. Przanowski, for useful discussions. We thank R. Tatar for pointing out Ref. 27. This work was supported in part by the CONACYT grants No. 33951E and 30420E.

 

References

1. M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, vols I and II (Cambridge: Cambridge University Press, 1987).         [ Links ]

2. J. Polchinski, String Theory, vols I and II (Cambridge: Cambridge University Press, 1998).         [ Links ]

3. D. Lüst and S. Theisen, Lectures on String Theory (Berlin: Springer-Verlag, 1989).         [ Links ]

4. J. Polchinski, "TASI Lectures on D-Branes," hep-th/9611050.         [ Links ]

5. C.V. Johnson, "D-Brane Primer," hep-th/0007170.         [ Links ]

6. A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge: Cambridge University Press 1994).         [ Links ]

7. G. t' Hooft, "Monopoles, Instantons and Confinement," hep-th/0010225.         [ Links ]

8. H. Kleinert, Gauge Fields in Condensed Matter (World Scientific: 1989).         [ Links ]

9. E. Witten, Nucl. Phys. B 249 (1985) 557.         [ Links ]

10. A. Sen, "Non-BPS States and Branes in String Theory", hep-th/9904207;         [ Links ] J.H. Schwarz, "TASI Lectures on Non-BPS D-Brane Systems", hep-th/9908144;         [ Links ] A. Lerda and R. Russo, "Stable non-BPS States in String Theory, hep-th/9905006.         [ Links ]

11. M.R. Douglas and N.A. Nekrasov, "Noncommutative Field Theory", hep-th/0106048.         [ Links ]

12. R.J. Szabo, "Quantum Field Theory and Noncommutative Spaces", hep-th/0109162.         [ Links ]

13. J. Harvey, P. Kraus, F. Larsen, and E.J. Martinec, JHEP 0007 (2000) 042 (hep-th/0005031).         [ Links ]

14. A.S. Gorsky, Y.M. Makeenko and K.G. Selivanov, Phys. Lett. B 492 (2000) 344 (hep-th/0007247).         [ Links ]

15. J. Harvey, P. Kraus and F. Larsen, JHEP 0012 (2000) 024 (hep-th/0010060).         [ Links ]

16. R. Gopakumar, S. Minwalla, and A. Strominger, "Noncommutative Solitons," JHEP 0005 (2000) 020, hep-th/0003160.         [ Links ]

17. K. Dasgupta, S. Mukhi and G. Rajesh, JHEP 0006 (2000) 022 (hep-th/0005006).         [ Links ]

18. E. Witten, "Noncommutative Tachyons and String Field Theory", hep-th/0006071.         [ Links ]

19. C. Sochichiu, JHEP 08 (2000) 026 (hep-th/0007217).         [ Links ]

20. R. Gopakumar, S. Minwalla and A. Strominger, "Symmetry Restoration and Tachyon Condensation in Open String Theory", hep-th/0007226.         [ Links ]

21. N. Seiberg, JHEP 09 (2000) 003 (hep-th/0008013).         [ Links ]

22. A. Sen, "Some Issues in Noncommutative Tachyon Condensation", hep-th/0009038.         [ Links ]

23. E. Witten, "Overview of K-Theory Applied to Strings", hep-th/0007175.         [ Links ]

24. J.A. Harvey and G. Moore, "Noncommutative Tachyons and K-Theory", hep-th/0009030.         [ Links ]

25. E.J. Martinec and G. Moore, "Noncommutative Tachyons on Orbifolds", hep-th/0101199.         [ Links ]

26. J.A. Harvey, "Komaba Lectures on Noncommutative Solitons and D-branes", hep-th/0102076.         [ Links ]

27. R. Tatar, "A Note on Noncommutative Field Theory and Stability of Brane-Antibrane Systems", hep-th/0009213.         [ Links ]

28. P. Kraus, A. Rajaraman and S. Shenker, Nucl. Phys. B 598 (2001) 169 (hep-th/0010016).         [ Links ]

29. K. Dasgupta and Z. Yin, "Nonabelian Geometry", hep-th/0011034.         [ Links ]

30. C.M. Zachos, "Deformation Quantization: Quantum Mechanics Lives and Works in Phase-Space", hep-th/0110114.         [ Links ]

31. S. de Alwis, Phys. Lett. B 461 (1999) 329 (hep-th/9905080).         [ Links ]

32. N. Seiberg and E. Witten, JHEP 09 (1999) 032 (hep-th/9908142).         [ Links ]

33. V. Schomerus, JHEP 9906 (1999) 030 (hep-th/9903205).         [ Links ]

34. H. García-Compeán, J.F. Plebański, M. Przanowski, and F.J. Turrubiates, J. Phys. A 33 (2000) 7935 (hep-th/0002212).         [ Links ]

35. L. Pilo and A. Riotto, JHEP 03 (2001) 015 (hep-ph/0012174).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License