SciELO - Scientific Electronic Library Online

 
vol.55 issue6Impedancia longitudinal de un gas bidimensional de electrones en régimen de efecto Hall cuánticoQuasi-static electromagnetic fields created by an electric dipole in the vicinity of a dielectric sphere: method of images author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Abstract

ALFONSO, L.; RAGA, G.B.  and  BAUMGARDNER, D.. Monte Carlo simulations of drop growth by coalescence and collision-induced breakup. Rev. mex. fis. [online]. 2009, vol.55, n.6, pp.437-442. ISSN 0035-001X.

A Monte Carlo framework to simulate the evolution of drop spectra by coalescence and collision-induced breakup is presented. The stochastic algorithm of Gillespie [1] for chemical reactions in the formulation proposed by Laurenzi and Diamond [2] was used to simulate the kinetic behavior of the drop population. Within Gillespie's framework, the collision-induced breakup process is modeled as a new "chemical reaction". The results of the Monte Carlo simulations were compared with the analytical solution to the collection-breakup equation obtained by Feingold et. al. [3], for an exponential distribution of satellite drops, and a constant collection and breakup kernels. A good correspondence between the analytical and the stochastic algorithm was found for this case.

Keywords : Cloud microphysics; Monte Carlo simulation; breakup process.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License