SciELO - Scientific Electronic Library Online

 
vol.59 issue1Micro sensor-actuador térmico sin baterías para aplicaciones en microelectrónica de ultra-bajo consumo de potencia author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Abstract

LOPEZ-HUERTA, F.; ROJAS-NAVA, G.; SOTO-CRUZ, B. S.  and  HERRERA-MAY, A. L.. Diseño e implementación de un sistema de caracterización para microsensores de efecto Hall. Rev. mex. fis. [online]. 2013, vol.59, n.1, pp.54-61. ISSN 0035-001X.

This paper presents the design and integration of an electrical characterization system for Hall effect microsensors, which allows the detection and measurement of magnetic field perpendicular to the surface of the microsensors. The proposed system can control and maintain the communication of both the position of the excitation source and the magnitude of the magnetic field. This system includes a mechanism for surface movement θ-Z with two degrees of freedom, sensors, electronic instruments, a computer, interface cards and a graphical user interface (GUI) implemented in Lab- View®. The positioning of the system is made through two motors, a stepper motor, and a servomotor. Which perform the movements in the θ-Z surface. The Z axis has a resolution of 0.03 cm through a stepper motor and the θ axis has a resolution of 1 cm, which is obtained using a servomotor. As excitation source, we used neodymium iron boron (NdFeB) magnet, which has a magnetic field of 100 mT. The detection field is obtained with microsensors which had a response in the linear range of 1 mT to 100 mT. This system allows a single interface through the detection of magnetic field perpendicular to the surface of the microsensor, as well as the positioning of the excitation source in the θ-Z surface. The GUI has a control environment accessible to the end user. Furthermore, the system can be reconfigured for the characterization of other microsensors, changing only the excitation and detection modules. Its versatility will increment the life time ofour system characterization.

Keywords : Magnetic field; θ-Z surface; Hall effect microsensors; graphical user interface.

        · abstract in Spanish     · text in Spanish

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License