SciELO - Scientific Electronic Library Online

 
vol.68 issue6Structural, electronic and optical properties of the wide band gap semiconductors KGaQ2 (Q = S, Se) and of AGaTe2 (A = K, Cs)Uncertainties in theoretical predictions for γ d → π 0 d observables near threshold due to the use of different elementary amplitudes author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Abstract

BENDAHMA, F. et al. Half-metallic and thermodynamic properties of new d0 CsCaZ (Z= Ge, Sn and Pb) half Heusler alloys: A spin-based devices vision for the future. Rev. mex. fis. [online]. 2022, vol.68, n.6.  Epub July 31, 2023. ISSN 0035-001X.  https://doi.org/10.31349/revmexfis.68.061004.

Density functional theory (DFT) was applied to investigate the structural, electronic, elastic, magnetic, thermodynamic and half-metallic properties of the newly d0 Heusler alloys (HAs) CsCaZ (Z= Ge, Sn and Pb).Spin-polarised calculations show that the compounds studied are half-metallic with a magnetic moment of 1.00 j Bat the equilibrium lattice parameter, which obeys the well-known Slater-Pauling rule Mtot = 8 - Zt. The half-metallic behavior of the compounds CsCaGe, CsCaSn and CsCaPb is predicted with respect to the equilibrium lattice constants for CsCaGe, CsCaSn and CsCaPb with a narrow band gap in the majority spin channel. Furthermore, the elastic constants (Cij) showed that these materials are ductile and anisotropic. In addition, the negative values of the calculated formation energy and cohesion energy indicate that CsCaZ (Z= Ge, Sn and Pb) are likely to be experimentally synthesized. Non-equilibrium Gibbs function is employed to calculate the thermodynamic properties through the quasi-harmonic Debye model in which the bulk modulus, heat capacity, Debye temperature, thermal expansion coefficient, and entropy are investigated at 0-20 Gpa pressure and 0-1200 K temperature ranges. The significant half-metallic behavior makes the CsCaZ (Z= Ge, Sn and Pb) compounds strong candidates for spintronic applications.

Keywords : d0 half Heusler; DFT calculations; half-metallicity; thermodynamic properties; spintronic applications.

        · text in English