SciELO - Scientific Electronic Library Online

 
vol.23 issue1The impact of urbanization on the monthly averaged diurnal cycle in October 2004 in the Pearl River Delta regionChanging rainfall in the Palakkad plains of South India author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Atmósfera

Print version ISSN 0187-6236

Abstract

SRIVASTAVA, KULDEEP et al. Simulation of high impact convective events over Indian region by ARPS model with assimilation of Doppler Weather Radar radial velocity and reflectivity. Atmósfera [online]. 2010, vol.23, n.1, pp.53-73. ISSN 0187-6236.

In this paper, impact of assimilation of Indian Doppler Weather Radar (DWR) data has been assessed by numerical weather prediction system (ARPS) at 9 km horizontal resolution. The radial velocity and reflectivity observations from two DWR stations namely, Chennai (Lat. 13.0° N and Long. 80.0° E) and Machilipatnam (Lat. 16.5° N and Long. 81.3° E) are assimilated using the ARPS Data Assimilation System (ADAS) and cloud analysis scheme of the model. Two case studies selected are 1) Bay of Bengal Tropical Cyclone Ogni of October 2006 and 2) A local thunderstorm event of 5 June 2009 over the southeast parts of India. The study shows that the model at 9 km resolution with the assimilation of DWR observations (Chennai) could simulate mesoscale features suchas: number of cells, spiral rain band structure, location of the center, strengthening of the lower tropospheric winds and northerly movement of the small size cyclonic storm in the analysis as well as in the forecasts. The model with DWR assimilation could retain the intensity of the cyclone up to 6 hours of forecasts. Thereafter the cyclone showed a weakening trend when it was drifting away from the radar site. In case of thunderstorm, the model with the DWR assimilation could capture the convective precipitation in the right location. The DWR assimilation could realistically reproduce the development process and south-westward movement of thunderstorm cells.

Keywords : Radial wind; reflectivity; ADAS; cloud analysis; cyclone; thunderstorm.

        · abstract in Spanish     · text in English

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License