SciELO - Scientific Electronic Library Online

 
vol.38Trend analysis and forecast of annual precipitation and temperature series in the Eastern Mediterranean regionObserved interannual variability and projected scenarios of drought in the Chorotega region, Costa Rica author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Atmósfera

Print version ISSN 0187-6236

Abstract

HARO VELASTEGUI, Arquímides; LARA SINALUISA, Jorge; PERUGACHI CAHUENAS, Nelly  and  MARTINEZ NOGALES, Juan. Small-scale variation of atmospheric dynamics applying chaos theory, case study. Atmósfera [online]. 2024, vol.38, 53274.  Epub May 03, 2025. ISSN 0187-6236.  https://doi.org/10.20937/atm.53274.

Characterization and knowledge of the variability of atmospheric dynamics on a small scale in the city of Riobamba, Ecuador, are achieved through the chaos theory. Meteorological data is taken every hour during four years, including variables such as wind speed, wind direction, incident radiation, temperature, and humidity, from the ESPOCH, SAN JUAN, and QUIMIAG weather stations in the canton of Riobamba. The van Ulden and Hostlang models are used to calculate the Obukhov length, surface heat fluxes, and latent heat flux. The chaos theory is applied to study the variation of atmospheric microdynamics. The Lyapunov coefficients, Kolmogorov-Sinai entropy, and Kaplan-Yorke fractal dimension are determined. Before analysis, noise reduction is necessary due to the lack of correlation, especially in the Obukhov length. This research follows a longitudinal design and employs quantitative and explanatory methods based on data analysis, statistical-mathematical techniques, and inductive-deductive approaches. The results indicate a highly variable system, reflected in a high number of Lyapunov coefficients, fractional dimensions, and entropy variations. The microdynamic parameters exhibit hyperchaotic behavior, as indicated by the presence of more than one positive Lyapunov coefficient. The variables also demonstrate a fractional fractal dimension, highlighting the irregularity in the geometric representation of the system.

Keywords : atmospheric dynamics; surface heat flux; Obukhov length; Lyapunov coefficients; chaos theory.

        · abstract in Spanish     · text in English