SciELO - Scientific Electronic Library Online

 
vol.15 issue3Population density in hydroponics culture for potato tuber-seed production (Solanum tuberosum L.)Changes in mature fruit quality of a synthetic squash population (Cucurbita pepo L.) author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Chapingo. Serie horticultura

On-line version ISSN 2007-4034Print version ISSN 1027-152X

Abstract

LOPEZ- LOPEZ, R. et al. Crop water stress index for husk tomatoes (Physalis ixocarpa BROT.). Rev. Chapingo Ser.Hortic [online]. 2009, vol.15, n.3, pp.259-267. ISSN 2007-4034.

The infrared thermometer used to measure crop water stress index (CWSI) is a reliable tool for irrigation scheduling, which, combined with efficient irrigation systems can maximize crop productivity. A study was conducted to determine the crop water stress index in husk tomato, or tomatillo, (Physalis ixocarpa Brot.) under a drip irrigation system, its relationship with irrigation depth and plastic mulch in scheduling irrigation and predicting fruit yield. The experiment design was completely randomized with three replicates. Treatments consisted of five irrigation depths (replacement of 40, 60, 80, 100 and 120 % of the reference evapotranspiration estimated by the Penman-Monteith method). CWSI was estimated using infrared radiation gun measurements of canopy temperature, air temperature, and relative humidity, and water vapor pressure deficit was calculated. The equation which defines the lower limit expresses the relationship between vapor pressure deficit (VPD) and temperature difference (crop and air (Tc-Ta)). When the crop transpires, the relationship is: Tc -Ta = 1.21 - 131 DPV (r2 = 0.68, P <0.01, n = 42), and the upper limit (stressed) was 2.8 °C, when transpiration stops. Fruit yield showed a positive linear correlation with average CWSI values: Y = 52.53-69.7CWSI, (r2 = 0.65, P<0.01 and n=30). Prediction models of CWSI and means of the effect of irrigation water and plastic mulch were fit with r2 = 0.87 to 0.96, P<0.01 and n=30. The CWSI increases linearly when the soil water potential decreases.

Keywords : drip irrigation; irrigation scheduling; yield prediction; plastic mulch; drip irrigation; matric potential; reference evapotranspiration.

        · abstract in Spanish     · text in Spanish

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License