SciELO - Scientific Electronic Library Online

 
vol.70 issue3Spatial variability of organic and inorganic carbon in soils of the Comarca Lagunera, MéxicoGeochronology of Mexican mineral deposits. VII: the Peña Colorada magmatic-hydrothermal iron oxide deposits (IOCG “clan”), Colima author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Boletín de la Sociedad Geológica Mexicana

Print version ISSN 1405-3322

Abstract

CORDOBA, Gustavo A.; SHERIDAN, Michael F.  and  PITMAN, Bruce. Titan2F code for lahar hazard assessment: derivation, validation and verification. Bol. Soc. Geol. Mex [online]. 2018, vol.70, n.3, pp.611-631. ISSN 1405-3322.  https://doi.org/10.18268/bsgm2018v70n3a3.

Debris flows, lahars, avalanches, landslides, and other geophysical mass flows can contain material in the order of O(106-1010) m3 or more. These flows commonly consist of a mixture of soil and rocks with a significant quantity of interstitial fluid. They can be tens of meters deep, and their runouts can extend many kilometers. The complicated rheology of such a mixture challenges every constitutive model that can reasonably be applied: The range of length and timescales involved in such mass flows challenge the computational capabilities of existing models. This paper extends recent efforts to develop a depth averaged “thin layer” model for geophysical mass flows that contain a mixture of solid material and fluid. Concepts from the engineering community are integrated with phenomenological findings in geoscience, resulting in a theory that accounts for the principal solid and fluid forces as well as interactions between the phases, across a wide range of solid volume fractions. A principal contribution here is to present drag and phase interaction terms that conform with the literature in geosciences. The Titan2F program predicts the evolution of the volumetric concentration of solids and dynamic pressure. The theory is validated with data from one-dimensional dam break solutions and with data from artificial channel experiments.

Keywords : lahar; modeling; depth averaging; two phase flow; debris flow; dynamic pressure.

        · abstract in Spanish     · text in English