SciELO - Scientific Electronic Library Online

 
vol.13 issue1Effect of the Surface Texture on Friction Thrust Bearing PerformanceTransmission Interferences Level Measurement for Digital Audiobroadcasting Signals Transmitted on Hybrid Mode author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingeniería, investigación y tecnología

On-line version ISSN 2594-0732Print version ISSN 1405-7743

Abstract

ACUNA, A.J. et al. Optimization of a Hydrocarbon Bioremediation System at Laboratory Scale. Ing. invest. y tecnol. [online]. 2012, vol.13, n.1, pp.105-112. ISSN 2594-0732.

The aim of this study was to optimize the parameters of moisture, temperature and ratio of nutrients to estimate the possibility of applying the technique of bioremediation in a soil contaminated with hydrocarbons. For this, an initial characterization of contaminated soil was made according to their physical and chemical characteristics and the number of heterotrophic and hydrocarbon degraders bacteria. Also the contaminant concentration by gravimetric method and by gas chromatography was studied. To optimize moisture and temperature, microcosms with moisture of 3%, 10%, 15% and 20% and temperatures of 5°C, 15°C, 28°C and 37°C were used. The monitoring of the mineralization of hydrocarbons was performed by measuring the CO2 produced. To optimize the ratio of nutrients, different microcosms were designed and were monitored by oxygen consumption and by determination of hydrocarbons by gas chromatography. The C:N:P relationships studied were 100:20:2, 100:10:1, 100:5:0,5 and 100:1:0,1. The results indicate that the mineralization of hydrocarbons was optimal for moisture of 10% to 20% and temperatures of 25°C to 37°C with CO2 production values of 3000-4500 mgCO2 kg-1. The optimal C:N:P ratio was 100:1:0,1 in which the highest oxygen consumption was and the elimination of 83% of total hydrocarbons determined by gas chromatography with 78% and 89% of n-alkanes and polyaromatic hydrocarbons elimination, respectively.

Keywords : biodegradation; hydrocarbons; soil; Patagonia.

        · abstract in Spanish     · text in Spanish

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License