SciELO - Scientific Electronic Library Online

 
vol.19 issue4Precipitation variability analysis in the State of Zacatecas, México, by utilizing satellite information and gaugesWind power forecasting using Artificial Intelligence tools author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingeniería, investigación y tecnología

On-line version ISSN 2594-0732Print version ISSN 1405-7743

Abstract

SANTIAGO-BAUTISTA, Lourdes et al. Coating growth on 304 stainless steel fractures by the Pechini method. Ing. invest. y tecnol. [online]. 2018, vol.19, n.4, e032. ISSN 2594-0732.  https://doi.org/10.22201/fi.25940732e.2018.19n4.032.

This study presents the first results of Ni-rich coating growth by the Pechini method on 304 stainless steels fractures, in order to healing fracture surfaces of metallic parts. A series of tests were performed to establish the calcination temperature by differential scanning calorimetry (DSC) at 1300°C using a heating rate of 10°C/min in mixtures of (CH3COO)2Ni•4H2O (Nickel Acetate Tetrahydrate) with HOC(COOH)(CH2COOH)2•H2O (Citric Acid Monohydrate) and precursors: HOCH2CHOHCH2OH (Glycerol) and HOCH2CH2OH (Ethyleneglycol). Results indicate that the Ethyleneglycol precursor is better than the Glycol because it shows a thermal stability at lower temperature of calcination. Subsequently, 304 stainless steel cylindrical fractures (0.6 cm in diameter, 1 cm height) were immersed in a solution of Ethyleneglycol and these samples were gelated at 110°C for 24 h in a muffle furnace. Additionally, these samples were calcined at 660°C for 60 min under an Ar flow of 200 ml/min, using a heating/cooling rate of 5°C/min in order to synthesize the nickel nanoparticles on the fractures. Coating growth on the fractures was carried out at an Ar flow of 220 ml/min at 1100°C for 60 min at a heating/cooling rate of 10°C/ min. By optical and scanning microscopy MEB), it was observed that the coating has a thickness of ~700 μm with a series of cuboidal precipitates larger than 1 μm, as well as laminar phases rich in Ni, Fe and Cr.

Keywords : Pechini method; stainless steel; fracture; nickel; nanoparticles.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )