SciELO - Scientific Electronic Library Online

 
vol.20 issue4Modelo matemático de la cinética y velocidad de hidratación del grano de maíz blanco dentado durante la cocción alcalina author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Superficies y vacío

Print version ISSN 1665-3521

Superf. vacío vol.20 n.4 Ciudad de México Dec. 2007

 

Effect of pulsed plasma nitriding temperature on microstructure properties of AISI 304 stainless steel

 

J. C. Díaz-Guillén1*, A. Garza-Gomez1, A. Campa-Castilla1, R. Méndez-Méndez1, R. López-Callejas2, A. E. Muñoz-Castro2, E. E. Granda-Gutiérrez3

 

1 Corporación Mexicana de Investigación en Materiales, S.A. de C.V. Ciencia y tecnología 790 Fraccionamiento Saltillo 400, CP 25290, Saltillo, Coahuila, México, * E-mail: jcarlos@comimsa.com.mx

2 Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP ll80l México DF.

3 Instituto Tecnológico de Toluca, AP 890, Toluca, Estado de México, México.

 

Recibido: 29 de junio de 2006.
Aceptado: 30 de agosto de 2007.

 

Abstract

This study reports the surface modification of AISI 304 stainless steel by applying nitrogen ion implantation by low energy plasma at different temperatures (380°C, 400°C, 440°C). The temperature of the samples was adjusted by varying the implantation pulse width while keeping the voltage constant at 1.5 kV. Microstructure and phase characterization were carried out by scanning electronic microscopy (SEM) and X-ray diffractometry (XRD) respectively. The surface hardness was determined by Knoop measurements, and the results show that the treatment increases up to two times the substrate hardness value. Additionally, it was found a direct dependence between the substrate temperature and the nitrided layer thickness. X-ray diffraction patterns indicate the shift of the peaks of the treated samples to lower angles than those of the untreated samples, which is a clear signature of expanded austenite.

Keywords: Surface Treatments; Surface Hardening, Nitriding.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[I] J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, N. C. Tran. J. Appl. Phys. 62, 4591 (1987).         [ Links ]

[2] G.F. Gomez and M. Ueda. J. of Appl. Phys. 94, 1 (2003).         [ Links ]

[3] M. A. Bejar, C. González. Rev. Mat. 8, 115 (2003).         [ Links ]

[4] D. Peix, M.A. Guitar, S.P. Bruhl, N. Mingolo, V. Vanzulli; A. Cabo, E. Forlerer. Rev. Materia 10, 205 (2005).         [ Links ]

[5] W. Liang. Appl. Surf. Sci. 211, 308 (2003).         [ Links ]

[6] L. Wang, X. Xu, Z. Yu. Surf. and Coat. Technol. 124, 93 (2000).         [ Links ]

[7] A. Sakar, Ch. Leroy, H. Michel, Mat. Sci. Eng. A 140, 702 (1991).         [ Links ]

[8] S. P. Hannula, P. Nenonen, J. P. Hirvonen. Thin Sol. Films 181, 343 (1989).         [ Links ]

[9] M. J. Baldwin, M. P. Fewell, S. C. Haydon, S. Kumar. Surf. and Coat. Technol. 98, 1187 (1998).         [ Links ]

[10] S. P. Bruhl, R. Charadia, N. Mingolo. Rev. Mat., 10, 1181 (2005).         [ Links ]

[11] R. López-Callejas, R. Valencia-Alvarado, O. Godoy-Cabrera, J. L. Tapia-Fabela. Rev. of Sci. Instrum. 73, 4227 (2000).         [ Links ]

[12] E. E. Granda-Gutiérrez, R. López-Callejas, R. Peña-Eguiluz, J. S. Benítez-Read, J. O. Pacheco-Sotelo, R. Valencia A., A. Mercado-Cabrera and S. R. Barocio. Surf. and Coat. Technol. 201, 5454 (2007).         [ Links ]

[13] M. Ueda, G. F. Gomes, Braz. J. of Phys. 34, 1632 (2004).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License