SciELO - Scientific Electronic Library Online

 
vol.9 issue3On the Sound Environment of the City of Puerto Vallarta, Jalisco, MexicoExtending Pseudo Inverses for Matrices to Linear Operators in Hilbert Space author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.9 n.3 Ciudad de México Dec. 2011

 

Optical Communication Receiver Based on a Switched–Quadrature Costas Loop

 

A. Arvizu–Mondragón*1, F. J. Mendieta–Jiménez2, J. de D. Sánchez–López3, I. Oropeza–Pérez4, J.R. López–Leandro5

 

1,2,3,4,5 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Carretera Ensenada–Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B. C. México. E–mail: arvizu@cicese.mx

 

ABSTRACT

In this paper we present the development and implementation of a switched–quadrature optical Costas loop receiver and its performance evaluation by means of simulations and with the experimental work of an optical set up and electronic circuitry. We report as well the implementation of some of the basic building blocks that are required by both homodyne and heterodyne receivers for coherent optical communication systems (guided and unguided, i.e., optical fiber and free space optics): we present an automatic wavelength controller (AWC), an electronically–driven state of polarization controller (ASOPC) as well as an optical phase locked loop (OPLL) for phase tracking.

Keywords: phase tracking, switched–quadratures, optical Costas loop, optical phase locked loop, optical wavelength controller, state of polarization controller.

 

RESUMEN

En el presente trabajo reportamos el desarrollo e implementación de un receptor basado en un lazo de Costas óptico con cuadraturas conmutadas así como la evaluación de su desempeño mediante simulaciones y a través de un montaje experimental óptico y con circuitería electrónica. Reportamos asimismo la implementación de varios de los bloques básicos que son requeridos en los receptores ópticos homodinos y heterodinos con aplicación en sistemas de comunicaciones ópticas coherentes (guiados y no guiados, es decir, por fibra óptica y por espacio libre): presentamos el control automático de longitud de onda, el controlador del estado de polarización manejado electrónicamente así como el lazo de encadenamiento de fase (PLL) óptico.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] N.Cvijetic et al, Polarization–multiplexed optical wireless transmission with coherent detection, IEEE Journ. of lightw. techn, Vol. 28, No.8, Ap. 15, 2010, pp.1218–1227.         [ Links ]

[2] J.C.Rasmusen et al, Digital Coherent Receiver Technology for 100–GB/s optical Transport Systems, Fuj. Sci. Tech.J.,Vol.46,No.1, pp.63–71, Jan. 2010.         [ Links ]

[3] X. Li et al, Electronic post–compensation of WDM transmission impairments using coherent detection and digital signal processing, Opt. Exp.16(2), 21 Jan. 2008, pp. 880–888.         [ Links ]

[4] Pfau T. et al, Towards Real–Time Implementation of Coherent Optical Communication, Opt. Exp., 2009, 16(2), pp. 866–872.         [ Links ]

[5] Guifang L., Recent advances in coherent optical communications, Advances in Optics and Photonics. 1, 2009, pp. 279–307.         [ Links ]

[6] A.Matiss et al, Novel Integrated Coherent Receiver Module for 100G Serial Transmission, Postd. Pap. PDPB3, OFC2010 Conf., San Diego, CA, USA, March 25, 2010.         [ Links ]

[7] S. Zhang et al, Experimental demonstration of decision–aided maximum likelihood phase estimation in 8–channel 42.8–Gbit/s DWDM coherent PolMux–QPSK system, Session OMK1 OFC2010 Conf., San Diego, CA, USA, March 25, 2010.         [ Links ]

[8] C. Fludger et al, Real–time prototypes for digital coherent receivers, Session OMS1 OFC2010 Conf., San Diego, CA, USA, March 25, 2010.         [ Links ]

[9] T. Sakamoto et al, Digital optical phase locked loop for real–time coherent demodulation of multilevel PSQ/QAM, Session OMS5 OFC2010 Conf., San Diego, CA, USA, March 25, 2010.         [ Links ]

[10] J. E. Simsarian et al, Fast–tuning 224 Gb/s intradyne receiver for optical packet networks, Postd.Pap.PDPB5, OFC2010 Conf., San Diego, CA, USA, March 25, 2010.         [ Links ]

[11] M.G. Taylor, Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments, IEEE Phot.Techn.Lett.16(2), 2004,pp. 674–676.         [ Links ]

[12] E. Ip et al, Coherent detection in optical fiber systems, 21 Jan. 2008 , Vol. 16, No. 2, Opt. Exp., pp.753–791.         [ Links ]

[13] A.Leven et al Feed–forward phase and frequency estimation in coherent digital and analog photonic links using digital signal processing, IEEE/MTT–S 2007,3–8 June 2007, Honolulu, HI, pp.1511–1514.         [ Links ]

[14] Keang–Po H.,Phase–modulated optical communications systems. Springer,2005,430 pp.         [ Links ]

[15] Kazovsky et al, Optical fiber Communication Systems, Artech House, 1996, 690 pp.         [ Links ]

[16] A.E. Willner et al, Monitoring and Control of Polarization–Related Impairments in Optical Fiber Systems, IEEE Journ.Lightw. Tecn., Vol. 22, No. 1, JAN.2004,pp.106–125.         [ Links ]

[17] Koch B.et al, Endless Optical Polarization Control at 56 krad/s, Over 50 Gigaradian, and Demultiplex of 112–Gb/s PDM–RZ–DQPSK Signals at 3.5 krad/s, IEEE Journ. of. Sel. Top. in Quant. Elec., Sept.–Oct. 2010,Vol.16, Issue:5, pp. 1158 – 1163.         [ Links ]

[18] Franz, J. H., Jain,V.K,Optical communications, components and systems, CRC Press,. 2000, 717 pp.         [ Links ]

[19] Andrews, L. C., Phillips, R.L. Laser beam propagation through random Media. SPIE Press, 2005, pp. 782.         [ Links ]

[20] http://www.celight.com/images/pdfs/CL–QOH–90–4–2005.pdf        [ Links ]

[21] Fabrega, J. M., Prat, J. Homodyne receiver prototype with time–switching phase diversity and feedforward analog processing, Opt. Lett., 32(5), 2007, pp. 463–465.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License