SciELO - Scientific Electronic Library Online

 
vol.14 issue2Competitiveness and profitability of beef cattle feedlot in the south of the State of MexicoImplication for in situ conservation of indigenous species with special reference to wild Coffea arabica L. population in mount Marsabit forest, Kenya author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Tropical and subtropical agroecosystems

On-line version ISSN 1870-0462

Abstract

LOSS, Arcângelo et al. Oxidizable organic carbon fractions and soil aggregation in areas under different organic production systems in Rio de Janeiro, Brazil. Trop. subtrop. agroecosyt [online]. 2011, vol.14, n.2, pp.699-708. ISSN 1870-0462.

The effect of organic management can influence positively the edaphic properties. The aim of this study was to evaluate the degree of organic carbon oxidation and the soil aggregation indexes in areas under organic management and different plant covers. The selected systems were: conventional tillage (corn - CT), no-tillage (eggplant - NT), passion fruit - Desmodium sp intercrops, fig cultivation, agroforestry system (AFS) and a secondary forest area. The soil samples were collected at 0-5 and 5-10 cm depths. The total organic carbon (TOC) was quantified and separated into four fractions (Fl, F2, F3 and F4) with decreasing degrees of oxidation, by the use of increasing quantities of sulfuric acid. Aggregate stability was determined by wet sieving, using the indices of mean weight diameter (MWD), geometric mean diameter (GMD) and sensitivity index (SI). The area under corn cultivation presented the lowest TOC concentrations and aggregation indices, in the two depths evaluated. The areas under eggplant and fig presented the highest TOC concentrations at the 0-5 cm depth, and the highest MWD at the 5-10 cm depth. There were SI values above 1 in the areas under fig and passion fruit. In general, the Fl fraction represented the largest proportion of TOC in all areas and in the two depths evaluated. The AFS presented the lowest proportions of TOC in the four fractions (0-5 cm). The area under eggplant (0-5 cm) presented the highest carbon concentrations in the Fl, F2 and F3 fractions. However, at the 5-10 cm depth, this behavior was observed in the area under corn, except for the Fl fraction. The results indicate that the management adopted in the area under corn did not favor soil aggregation and TOC. In the other areas, the SI determined indicates that the tillage practices associated to plant cover, in organic systems, preserved soil aggregation when compared to the forest area, at the 0-5 cm depth. The oxidizable carbon concentrations were influenced by the management systems adopted, with higher values in the areas where more plant residues were added to the soil.

Keywords : plant residues; green manure; conventional tillage and no-tillage.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License