SciELO - Scientific Electronic Library Online

 
vol.53 issue3Efficient 'One Pot' Nitro Reduction-Protection of γ-Nitro Aliphatic Methyl EstersCalculation of the Density and Detonation Properties of C, H, N, O and F Compounds: Use in the Design and Synthesis of New Energetic Materials author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

J. Mex. Chem. Soc vol.53 n.3 Ciudad de México Jul./Sep. 2009

 

Article

 

On the Heats of Formation of Alkanes*

 

Jenn–Huei Lii and Norman L. Allinger*

 

Department of Chemistry, Chemistry Annex, University of Georgia, Athens, Georgia 30602. *Responsible author.

 

Received April 21, 2009
Accepted August 11, 2009

 

Abstract

A broad diverse test set of alkanes and cycloalkanes previously studied with MM4 calculations has had the heats of formation calculated by several different quantum mechanical methods: Hartree–Fock, MP2, and MP4, and also by B3LYP and B3LYP + dispersion energy. Overall, three computational methods (MM4, MP4, and B3LYP + dispersion) yield results that are generally of experimental accuracy. These results are analyzed and compared in some detail.

Keywords: MM4, MP4, B3LYP, Dispersion Energy, Heats of Formation.

 

Resumen

Se describen los cálculos de calores de formación de un conjunto amplio y diverso de alcanos y cicloalcanos que habían sido estudiados previamente por el método MM4. En este trabajo se emplean diversos métodos de mecánica cuántica, entre ellos se encuentran: Hartree–Fock y MP4, así como B3LYP y B3LYP + energía de dispersión. De estos métodos de cálculo, los métodos computacionales MM4, MP4 y B3LYP + energía de dispersión proporcionan resultados que coinciden con los datos experimentales. Estos resultados se analizan y comparan detalladamente.

Palabras clave: MM4, MP4, B3LYP, Energía de dispersión, calores de formación.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Benson, S. W. Thermochemical Kinetics, Wiley, New York, 1976.         [ Links ]

2. Burkert, U.; Allinger, N. L. Molecular Mechanics, American Chemical Society, Washington, D.C., 1982.         [ Links ]

3. Engler, E. M.; Andose, J. D.; Schleyer, P. V. R. J. Am. Chem. Soc. 1973, 95, 8005.         [ Links ]

4. Allinger, N. L.; Tribble, M. T.; Miller, M. A.; Wertz, D. H. J. Am.Chem. Soc. 1971, 93, 1637.         [ Links ]

5. Allinger, N. L.; Hirsch, J. A.; Miller, M. A.; Tyminski, I. J.; and Van–Catledge, F. A. J. Am. Chem. Soc. 1968, 90, 1199.         [ Links ]

6. (a) Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds, Academic Press, London, 1970.         [ Links ] (b) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd Edition, Chapman and Hall Ltd, 1986.         [ Links ] (c) National Institute of Standards and Technology (NIST), http://webbook.nist.gov/chemistry/.         [ Links ]

7. Allinger, N. L.; Chen, K.; Lii, J.–H. J. Comput. Chem. 1996, 17, 642.         [ Links ]

8. (a) Chen, K.–H.; Lii, J.–H.; Fan, Y.; Allinger, N. L. J. Comput. Chem. 2007, 28, 2391, and references therein.         [ Links ] (b) Lii, J.–H. J. Phys. Chem. 2002, 106, 8667.         [ Links ]

9. Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. J. Phys. Chem. A 2000, 104, 5850, and papers cited therein.         [ Links ]

10. (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc., New York, 1986.         [ Links ] (b) Disch, R. L.; Schulman, J. M. J. Phys. Chem. 1996, 100, 3504.         [ Links ] (c) Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547.         [ Links ]

11. (a) Wiberg, K. J. Comput. Chem., 5, 197 (1984);         [ Links ] Wiberg, K. J. Org. Chem. 1985, 50, 5285.         [ Links ] (b) Ibrahim, M. R.; Schleyer, P. v. R. J. Comput. Chem. 1985, 6, 157.         [ Links ]

12. Allinger, N. L.; Schmitz, L. R.; Motoc, I.; Bender, C.; Labanowski, J. J. Am. Chem. Soc. 1992, 114, 2880. See especially the Supplementary Material.         [ Links ]

13. (a) Allinger, N. L.; Sakakibara, K.; Labanowski, J. J. Phys. Chem. 1995, 99, 9603.         [ Links ] (b) Schmitz, L. R.; Chen, K.–H.; Labanowski, J.; Allinger, N. L. J. Phys. Org. Chem. 2001, 14, 90.         [ Links ]

14. (a) Aped, P.; Allinger, N. L. J. Am. Chem. Soc. 1992, 114, 1.         [ Links ] (b) Chen, K.–H.; Allinger, N. L. J. Mol. Struct. (Theochem), 2002, 581, 215.         [ Links ]

15. (a) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.         [ Links ] (b) Wertz, D. H.; Allinger, N. L. Tetrahedron, 1979, 35, 3.         [ Links ]

16. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B. ; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C. ; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.         [ Links ]

17. (a) Labanowski, J.; Schmitz, L. R.; Chen, K.–H.; Allinger, N. L. J. Comput. Chem. 1998, 19, 1421.         [ Links ] (b) Schmitz, L. R.; Chen, K.–H.; Labanowski, J.; Allinger, N. L. J. Phys. Org. Chem. 2001, 14, 90.         [ Links ]

18. (a) Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175.         [ Links ] (b) Grimme, S. J. Chem. Phys., 124, 034108 (2006).         [ Links ] (c) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397.         [ Links ]

19. Verevkin, S. P.; Nolke, M.; Beckhaus, H.–D.; Ruechardt, C. J. Org. Chem. 1997, 62, 4683.         [ Links ]

20. (a) Beckhaus, H.–D.; Ruechardt, C.; Lagerwall, D. R.; Paquette, L. A.; Wahl, F.; Prinzbach, H. J. Am. Chem. Soc. 1995, 117, 8885.         [ Links ] (b) Beckhaus, H.–D.; Ruechardt, C.; Lagerwall, D. R.; Paquette, L. A.; Wahl, F. Prinzbach, H. J. Am. Chem. Soc. 1994, 116, 11775.         [ Links ]

 

Note

*We would like to dedicate this paper to the memory of the good friend and long term colleague of the senior author, Professor Ernest L. Eliel.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License