SciELO - Scientific Electronic Library Online

 
vol.66 issue2In-silico Studies of Phytochemicals of Ashwagandha, Harsingar, Meethi neem and Tulsi Against Covid-19Selective Pb(II)-Imprinted Polymer for Solid Phase Extraction in the Trace Determination of Lead in Infant Formula by Capillary Electrophoresis author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

Abstract

PORTILLO-CASTILLO, Omar J. et al. Fabrication and Characterization of a Laboratory-Made New Coating Based on 1-Decyl-3-Methylimidazolium Tetrafluoroborate for SPME Fibers, an Exploration to its Application in Extractions by Direct-Immersion Mode. J. Mex. Chem. Soc [online]. 2022, vol.66, n.2, pp.198-220.  Epub Dec 05, 2022. ISSN 1870-249X.  https://doi.org/10.29356/jmcs.v66i2.1693.

A novel coating for solid-phase microextraction (SPME) fibers was manufactured by using a mixture of 1-decyl-3methylimidazolium tetrafluoroborate ionic liquid and a commercial adhesive deposited on an etched stainless-steel support. The new coating was characterized by applying optical and electron microscopy, infrared spectroscopy and its extraction capacity was also evaluated. The extraction capacity was tested using as model analytes some pharmaceutical and personal care products (PPCPs) with different hydrophilicities. The potential use of the new fiber was evaluated through direct-immersion mode extractions and showed extraction capacity toward methylparaben, propylparaben, naproxen, diclofenac and benzophenone-3. Experimental design tools were used to study and optimize the variables that affect the extraction and desorption processes of the SPME by direct immersion. The analytical performance of proposed method was investigated under SPME procedure´s optimal conditions, coupled to a high-performance liquid chromatography-diode array detector (HPLC-DAD) method, which was developed and validated for analysis of the target PPCPs. The method of SPME by direct immersion was linear, precise and accurate. Detection and quantification limits of 0.023 to 0.093 μg mL-1 and 0.118 to 0.279 μg mL-1 were obtained, respectively. By the use of the developed method, tap water samples were analyzed and recoveries from 3.39 to 183.29 % were found. The new fiber presented an adequate stability and good extraction reproducibility (<15 % RSD). As a final point, this device is of easy and quick preparation, inexpensive, and suitable for extraction of some PPCPs.

Keywords : Ionic liquids; coating; extractant phase; SPME fiber; DI-SPME.

        · abstract in Spanish     · text in English