SciELO - Scientific Electronic Library Online

 
vol.54 issue2Student use of vectors in the context of accelerationSimple assembling of organic light-emitting diodes for teaching purposes in undergraduate labs author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física E

Print version ISSN 1870-3542

Abstract

ROJAS, S  and  GUEVARA-JORDAN, J.M. On second-order mimetic and conservative finite-difference discretization schemes. Rev. mex. fís. E [online]. 2008, vol.54, n.2, pp.141-145. ISSN 1870-3542.

Although the scheme could be derived on the grounds of a relatively new numerical discretization methodology known as Mimetic Finite-Difference Approach, the derivation of a second-order mimetic finite difference discretization scheme will be presented in a more intuitive way, using Taylor expansions. Since students become familiar with Taylor expansions in earlier calculus and mathematical methods for physicist courses, one finds this approach of presenting this new discretization scheme to be more easily handled in courses on numerical computations of both undergraduate and graduated programs. The robustness of the resulting discretized equations will be illustrated by finding the numerical solution of an essentially hard-to-solve, one-dimensional, boundary-layer-like problem, based on the steady diffusion equation. Moreover, given that the presented mimetic discretization scheme attains second-order accuracy in the entire computational domain (including the boundaries), as a comparative exercise the discretized equations can be readily applied in solving examples commonly found in texbooks on applied numerical methods and solved numerically via other discretization schemes (including some of the standard finite-diffence discretization schemes)

Keywords : Mimetic discretizations; finite difference; partial differential equations; diffusion equation; Taylor expansions; boundary layer.

        · abstract in Spanish     · text in English

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License