SciELO - Scientific Electronic Library Online

 
vol.14 issue1Genetic variability in aerial biomass and its components in alfalfa under irrigation and droughtThymol and carvacrol determination in a swine feed organic matrix using Headspace SPME-GC-MS author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias pecuarias

On-line version ISSN 2448-6698Print version ISSN 2007-1124

Abstract

GUEVARA-ESCOBAR, Aurelio et al. Estimación de masa de forraje en una pradera mixta por aprendizaje automatizado, datos del manejo de la pradera y meteorológicos satelitales. Rev. mex. de cienc. pecuarias [online]. 2023, vol.14, n.1, pp.61-77.  Epub Mar 24, 2023. ISSN 2448-6698.  https://doi.org/10.22319/rmcp.v14i1.6162.

Medir la masa de forraje (MF) en la pradera, antes del pastoreo, es fundamental para determinar la asignación diaria de forraje en sistemas pastoriles de producción animal. La MF se estima por corte de forraje en áreas conocidas, utilizando ecuaciones alométricas, o con el uso de sensores de percepción remota (PR); sin embargo, la exactitud y practicidad de los distintos métodos para estimar la MF, es variable. El objetivo fue obtener modelos predictivos usando variables ambientales y del manejo de la pradera para predecir la MF. Se ajustaron modelos de regresión para estimar la MF con base en variables del manejo de la pradera (MP) o mediciones obtenidas por PR, como reflectancia, temperatura del aire y lluvia. Por tres años se estudió una pradera mixta pastoreada con bovinos productores de carne. Con 80 % de datos se modeló por mínimos cuadrados ordinarios (OLS) o por algoritmos de aprendizaje automatizado (ML). El 20 % restante de los datos se utilizó para validar los modelos usando el coeficiente de determinación y el sesgo promedio entre valores estimados y observados. El modelo base de estudio fue la relación entre la altura de la pradera antes del pastoreo y la MF de este modelo se ajustó usando OLS; la r2 fue 0.43. Cuando se ajustaron modelos que incluyeron variables del MP, la r2 fue 0.45 para OLS y 0.63 para ML. Al ajustar modelos con variables de MP y PR, la r2 fue 0.71 para OLS y 0.96 para ML. Los ensambles de modelos ajustados con ML redujeron el sesgo de estimados de MF de la pradera examinada. En general, los modelos de ML representaron mejor la relación entre altura de la pradera antes del pastoreo y MF que los de modelos de OLS, al ajustarlos con variables de manejo de la pradera y con información de PR. Los modelos de ML pueden usarse como herramienta para la toma de decisiones diaria en sistemas productivos pastoriles.

Keywords : Alfalfa; Forraje; Lluvia; Temperatura; Sensores remotos.

        · abstract in English     · text in English | Spanish     · English ( pdf ) | Spanish ( pdf )