SciELO - Scientific Electronic Library Online

 
vol.2 número3Digital blood pressure monitorProduct engineering of a laboratory electronic equipment índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.2 no.3 Ciudad de México dic. 2004

 

Laser ultrasonic for measurements of velocity distribution in pipes

 

M. Navarrete1, F. Hernández2, J. Morales2 & M. Villagrán-Muniz3

 

1 Instituto de Ingeniería, Edificio 12, Sección de Ing. Mecánica Térmica y Fluidos, UNAM, A. P. 70-472, Coyoacán, C.P. 04510, México, D. F.

2 Facultad de Ingeniería, UNAM, A.P. 70-258 C. P. 04511, México, D.F.

3 Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Laboratorio de Fotofísica, UNAM, A.P. 70-186, México, D. F.

 

Received: January 15th, 2003.
Accepted: March 26th, 2003.

 

Abstract

The present work describes the development of a photoacoustic flowmeter with probe-beam deflection. A pulsed laser beam produces an acoustic pulse, whose propagation is registered by its deflection effects on two cw probe beams. The acoustic pulse in a flowing fluid is produced by absorption of a laser pulse (30 ns, 1.1 mJ) focused over a path flow line. The acoustic propagations, along and against the flow, are monitored by two cw probe beams. In the interaction, the probe beam undergoes a transient deflection that is detected by a fast response photodiode. The velocity distribution data profile of a square pipe is obtained by means of the acoustic pulse arrival time measured through its cross section applying the cylindrical shockwave model developed by Vlasses. The profiles determined with this experimental technique are compared with two turbulent pipe flow models.

Keywords: Velocimetry; Turbulent pipe flow; Laser-induced blast waves.

 

Resumen

El presente trabajo describe el desarrollo de un velocímetro fotoacústico para fluidos utilizando deflectometría. El sistema de medición está basado en la detección de un pulso acústico, producido por la absorción de un pulso láser (30 ns, 1.1 mJ) que es enfocado en una línea de corriente del flujo. La propagación del pulso es registrada, aguas arriba y aguas abajo, mediante dos haces continuos que sufren una deflexión cuando interactúan con la onda acústica que es detectada por un fotodiodo rápido. De esta manera, el perfil de velocidades de una tubería de sección cuadrada es encontrado mediante el tiempo de arribo del pulso acústico medido en su sección transversal, aplicando el modelo de onda de choque cilíndrica desarrollado por Vlasses. Los perfiles obtenidos con los valores experimentales son comparados con dos modelos de flujo turbulento aplicados en tuberías.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

We are grateful to Instituto de Ingeniería UNAM, and DGAPA- UNAM for the financial support of this work provided by grants 2115 and IN1 12402-3, respectively.

 

Reference

[1] Huelsz G., López-Alquicira F. Hot wire anemometry in acoustic wave, Exp. Fluids, Vol. 30 (3), 2001, pp. 283-285.         [ Links ]

[2] McComb, W.D. and Chan, K.T. Laser Doppler anemometer measurements of turbulent structure in drag-reducing fiber suspensions, J. Fluid Mechanics, Vol. 152 (4), 1985, pp. 55-78.         [ Links ]

[3] Grant, I. Particle imaging velocimetry: a review, Proc. Inst. Mech. Engrs (Part C), Vol. 211, 1997, pp. 55-76.         [ Links ]

[4] Raffel, M., Willert, C., Kompenhans, J. Particle image velocimetry, a practical guide, New York : Springer, 1998.         [ Links ]

[5] Chan, K. T., Li, Y. J. Pipe flow measurement by using a side-scattering holographic particle imaging technique, Optics & Laser Technology, Vol. 30, 1998, pp. 7-14.         [ Links ]

[6] Gustafson, E. K., McDaniel, J. C. & Byer, R, L. Cars measurement of velocity in a supersonic jet, IEEE J. Quantum Electron, QE-17 (12), 1981, p. 2258.         [ Links ]

[7] Herring G. C., Fairbank Jr. W. M and She C. Y. Observation and measurement of molecular flow using stimulated Raman gain spectroscopy, IEEE J. Quantum Electron, QE-17 (10), 1981, p. 1975.         [ Links ]

[8] Zapka, W. and Tam, A. C. Photoacoustic pulse generation and probe-beam deflection for ultrasonic velocity measurements in liquids, Appl. Phys. Lett., Vol. 40 (4), 1982, pp. 310-312.         [ Links ]

[9] Zapka, W. and Tam, A. C. Noncontact Optoacoustic determination of gas velocity and temperature simultaneously, Appl. Phys. Lett., Vol. 40 (12), 1982, pp. 1015-1017.         [ Links ]

[10] Sakakibara, J., Hishida, K. & Maeda, M. Measurements of thermally stratified pipe flow using image-processing techniques, Exp. Fluids, Vol. 16, 1993, pp. 82-96.         [ Links ]

[11] Vlases, J.C. & Junes, D.L. Blast wave from an inverse pinch machine the Phisics of Fluids, Vol 9, No 3, 1966, pp. 478-485.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons