Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.3 no.2 Ciudad de México ago. 2005
Characterization of the discharge coefficient of a sonic Venturi nozzle
J. A. Cruz-Maya1, F. Sánchez-Silva2- P. Quinto-Diez2 & M. Toledo-Velázquez2
1 Programa Integral de Investigación en Gas. Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, 07730 Mexico DF., Mexico. Unidad Profesional Interdisciplinaria de Ingeniería y Tecnologías Avanzadas, Departamento de Mecatrónica, IPN.
2 Laboratorio de Ingeniería Térmica e Hidráulica Aplicada, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Mecánica e Ingeniería Electrónica, Instituto Politécnico Nacional. Av. IPN s/n Col. Lindavista, Edif. 5, UPALM, 07738, Mexico, DF., Mexico. jcmaya@imp.mx
Received: November 17th, 2003.
Accepted: May 24th, 2005.
Abstract
This paper identifies and determines the main parameters used to calculate the discharge coefficient of a toroidal Venturi nozzle according to the ISO Standard 9300, operating at the critical flow regime (sonic). This study was conducted to investigate the effects of the viscous stresses in the turbulent boundary layer, the wall thermal boundary condition, and the flow field curvature at the nucleus of the nozzle on the discharge coefficient by means of a theoretical and numerical approach. Characterization of the discharge coefficient in the Venturi sonic nozzle was performed considering the viscous and multidimensional effects of the fluid flow as uncoupled phenomenon. As a result, each non-ideal mechanism can be analyzed independently from the influence of the other mechanism. We present a numerical procedure to characterize the discharge coefficient in the inviscid region of the flow, by using the numerical simulation of the inviscid main flow by means of the commercial CFD code. In the region of the viscous stresses, the characterization of this coefficient is based on the analytical theory of the turbulent boundary layer. This characterization allowed obtaining a correlation of the discharge coefficient that was validated by direct comparison between the experimental correlations of the discharge coefficient in turbulent boundary layer proposed by ISO-9300 and the Korea Research Institute of Standards and Science (KRISS). This validation was carried out for throat Reynolds numbers from 1.4 to 2.6x106. The agreement of the theoretical and measured discharge coefficients by these correlations was better than 0.2%.
Keywords: Critical Nozzle, Discharge Coefficient, Critical Flow.
Resumen
En el presente artículo se identifican y caracterizan los parámetros que intervienen en la determinación del coeficiente de descarga de toberas toroidales de flujo crítico bajo la norma ISO-9300. El estudio se enfoca a investigar la incidencia de los efectos viscosos en la región de capa límite y la curvatura del campo de flujo en el núcleo de la tobera sobre el coeficiente de descarga. La caracterización del coeficiente de descarga se lleva a cabo dividiendo el flujo en dos zonas para su estudio, la primera zona considera los esfuerzos viscosos generados en la región de capa límite, en la segunda zona, el flujo se considera no viscoso y el estudio se orienta hacia su comportamiento no unidimensional. Cada uno de estos mecanismos es estudiado en forma independiente sin la influencia del otro, la caracterización del coeficiente en la región de flujo no viscoso se lleva a cabo mediante la simulación numérica del flujo por medio de CFD. En la región de flujo viscoso, la caracterización del coeficiente se lleva a cabo bajo un enfoque analítico, basado en la teoría de capa límite turbulenta. Como resultado de la caracterización, se obtiene una correlación teórico-numérica capaz de determinar el coeficiente de descarga directamente sin necesidad de calibración. La correlación obtenida fue validada mediante una comparación directa contra correlaciones experimentales obtenidas en el Korea Research Institute of Standards and Science (KRISS) y la norma ISO-9300 para números de Reynolds en la garganta de la tobera de 1.4 a 2.6x10", la desviación es inferior al 0.2%.
DESCARGAR ARTÍCULO EN FORMATO PDF
REFERENCES
[1] Measurement of fluid flow in closed conduits. Section 1.3 Method of measurement of gas flow by means of critical flow Venturi nozzles, ISO 9300. 1990. [ Links ]
[2] Johnson, R. C. Calculations of real gas effects in flow through critical flow nozzles, ASME J. Basic Eng., Series D, 86, Sept. pp. 519-526, 1964. [ Links ]
[3] Stratford, B. S. The calculation of the discharge coefficient of profiled choked nozzles and optimum profile for absolute air flow measurement. J. Royal Aeronautic Society 68 pp. 237-245, 1964. [ Links ]
[4] Tang, S. P. Discharge coefficients for critical flow nozzles and their dependence on Reynolds number. Ph. D. Thesis Dissertation Department of Mechanical Engineering, Princeton Univ., Princeton NJ., 1969. [ Links ]
[5] Geropp, D. Laminaire grenzschichten In ebenen und rotationssymmetrischen Lavalduessen, Deutsche Luft-Und Raumfart, Forschungsbericht, pp. 71-90, 1971. [ Links ]
[6] Ishlbashi, M. and Takamoto, M. Very accurate analytical calculation of the discharge coefficients of critical Venturi nozzles with laminar boundary layer. Proceedings of ASME Fluids Engineering Division Summer Meeting, Vancouver, British Columbia, Canada, June, pp. 22-26, 1977. [ Links ]
[7] Johnson, A. N. and Mattingly, G.E. Numerical characterization of the discharge coefficient in critical nozzles, Ph. D. Thesis National Institute Standards and Technology, Gaithersburg, Maryland 20899, technical paper 1989. [ Links ]
[8] Cruz, J. A. and Sanchez, S. F. Parametric Study of Discharge Coefficient on Critical Sonic Nozzles ISO-9300 with Turbulent Boundary Layer, FEDSM-ASME, Montreal, Canada, 2002. [ Links ]
[9] Steger, J. L. Implicit, finite difference simulation of flow about arbitrary geometries, AIAA Journal 16 (7) (1978). [ Links ]
[10] Choi, Y. M., Park, K. A., and Park, J. T. Interference effects of three sonic nozzles of different throat diameters In the same meter tube, Flow Measurement and Instrumentation 10. pp. 175-181, 1991. [ Links ]