Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.9 no.3 Ciudad de México dic. 2011
Electronic Implementation of a Fuzzy Neuron Model With a Gupta Integrator
A. RamírezMendoza*1, J. L. PérezSilva2, F. LaraRosano3
1 Posgrado en Ingeniería, Universidad Nacional Autónoma de México *Email: ARamirezM@iingen.unam.mx
2,3 Centro de Ciencias Aplicadas y Desarrollo Tecnológico Universidad Nacional Autónoma de México.
ABSTRACT
In this paper the electronic circuit implementation of a fuzzy neuron model with a fuzzy Gupta integrator is presented. This neuron model simulates the performance and the fuzzy response of a fastspiking biological neuron. The fuzzy neuron response is analyzed for two classical (nonfuzzy) input signals, the results are spike trains with relative and absolute refractory period and an axonal delay. A comparison between the response of the proposed fuzzy neuron model and the intracellular registers of biological fastspiking cortical interneurons is made, as well as the transients presented at the beginning of each spike train. Also the results obtained from the electronic circuit of the fuzzy neuron model with the MatlabTM simulation of the mathematical model are compared.
Keywords: Artificial neurons, electronic models of neurons, axonal delay, refractory period, fast spiking neuron response, biological based neuron models, interneurons.
RESUMEN
En este trabajo realizamos la implantación del circuito electrónico del modelo de una neurona con un integrador difuso tipo Gupta que simula el funcionamiento y obtiene una respuesta difusa de una neurona de espigueo rápido; se dan las ecuaciones del modelo de neurona difusa y se obtiene una respuesta difusa de la neurona para dos señales de entrada no difusas. El resultado son trenes de espigas en donde se pueden apreciar el periodo refractario relativo y absoluto, así como el retardo axónico. Se compara la respuesta del modelo de neurona difusa propuesto con registros intracelulares de interneuronas corticales de espigueo rápido biológicas, así como del transitorio que presentan al inicio de cada tren de espigas. También se comparan los resultados obtenidos del circuito electrónico del modelo de neurona difusa con la simulación del modelo matemático de la neurona difusa en MatlabTM.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] A. N. Burkitt, "A review of the integrateandfire neuron model: I. Homogeneous synaptic input", Biological Cybernetics, Vol. 95, 2006, pp. 119. [ Links ]
[2] Teresa B. Ludermir and Wilson R. de Oliveira, "Weightless Neural Models", Computer Standards & Interfaces 16, 1994, pp. 253263. [ Links ]
[3] Chaturvedi D.K., Satsangi P.S. and Prem K. Kalra, "New Neuron Models for Simulating Rotating Electrical Machines and load forecasting problems", Electric Power Systems Research 52, 1999, pp.123131. [ Links ]
[4] Pérez S. J.L., Herrera A., et al, "Electronics Implementation of a Neuron Model with parabolic burst response", Third International Workshop on Design of MixedMode Integrated Circuits and Applications, 2628 July 1999, pp. 122125. [ Links ]
[5] Pérez S. J. L., Garces A., et al, "Electronic Model of a Neuronal Sinapsis of Voltage to Frequency, and Frequency to Voltage conversion", Third International Workshop on Design of MixedMode Integrated Circuits and Applications, 2628 July 1999, pp.171174. [ Links ]
[6] Ramírez Mendoza Abigaíl M. E., "Modelado Electrónico de dos Neuronas Integradoras Borrosas", Tesis de Maestría, División de Estudios de Posgrado de la Facultad de Ingeniería de la U.N.A.M., México, 1998. [ Links ]
[7] Pérez J. L., Ramírez A., "Two New Models of Integrative Fuzzy Neuron", Instrumentation & Development, Vol. 5, Nr.3, Diciembre, 2001, pp. 140145. [ Links ]
[8] Pérez S. J. L., LaraRosano F., Herrera, A. et al, "Electronic Model of a Extended Fuzzy Neuron", Proceedings of The Second Join México E.U.A. International Conference on Neural Networks and Neurocontrol (Sian Ka'an 97), Playa del Carmen, México, Agosto 1929, 1997, pp. 189199. [ Links ]
[9] Gupta M.M. and Qi J., "On Fuzzy Neuron Models", [ Links ] Fuzzy logic for the management of uncertainty, Ed. Lotfi A. Zadeh and Janusz Kacprzyk, ISBN: 0471547999, 1992, pp. 479491. [ Links ]
[10] N. D. Velasco, R. ÁvilaPozos, F. R. Godínez, "Desarrollo de un software de estimulación y adquisición de señales eléctricas celulares, basado en una tarjeta comercial de adquisición de datos", Revista mexicana de ingeniería biomédica Vol. XXVI, No. 2, Septiembre, 2005, pp. 92105. [ Links ]
[11] Nicolas Langlois, Pierre Miché, Abdelaziz Bensrhair, "Analogue circuits of a learning spiking neuron model", IEEE, 2000, pp. 485489. [ Links ]
[12] Jayawa H. B. Wijekoon and Piotr Dudek, "Integrated circuit implementation of a cortical neuron", IEEE, 2008, pp. 17841787. [ Links ]
[13] Eugene M. Izhikevich, "Simple Model of Spiking Neurons", IEEE Transactions on neural networks, Vol. 14, No. 6, November, 2003, pp. 15691572. [ Links ]
[14] Witold Pedrycz, Marek Reformat, and Kuwen Li, "OR/AND Neurons and the development of interpretable logic models", IEEE Transactions on neural networks, Vol. 17, No. 3, May, 2006, pp. 636658. [ Links ]
[15] Gerstner Wulfram, Werner Kistler, "Spiking Neuron Models", Ed. Cambridge University Press, 2002, pp. 110, 9394. [ Links ]
[16] J.L. Pérez S., A. Garcés M., F. Cabiedes C., A. Miranda V., "Electronic model of a dubois fuzzy integration neuron", Journal of Applied Research and Technology, Vol.7 No. 1 April 2009, pp. 7382. [ Links ]
[17] M. Sekerli, R. J. Butera, "An Implementation of a Simple Neuron Model in Field Programmable Analog Arrays", Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 15, 2004, pp. 45644567. [ Links ]
[18] David Golomb, Karnit Donner, Liron Shacham, Dan Shlosberg, Yael Amitai, David Hansel, "Mechanisms of Firing Patterns in FastSpiking Cortical Interneurons", PLoS Computational Biology, Vol. 3 No. 8, agosto 2007, pp. 14981512. [ Links ]
[19] Evyatar AvRon, Hanna Parnas, Lee A. Segel, "A basic biophysical model for bursting neurons", Biological Cybernetics, SpringerVerlag, 1993, Vol. 69, pp. 8795. [ Links ]
[20] M. Scholles, B.J. Hosticka, M. Kesper, P. Richert, and M. Schwarz, "BiologicallyInspired Artificial Neurons: Modeling and Applications", Proceedings of 1993 International Joint Conference on Neural Networks, 1993, pp. 23002303. [ Links ]
[21] Ramírez A., Pérez J. L., "A Fuzzy Gupta Integrator Neuron Model with Spikes Response and Axonal delay", in Advances in Artificial Intelligence & Engineering Cybernetics, Vol. IX George E. Lasker (Ed.), Windsor, Canada: IIAS, ISBN: 1894613449, 2002, pp.12 16. [ Links ]
[22] Lazzaro J., "Low Power Silicon Spiking Neurons and Axons", Circuits and Systems, ISCAS'92 Proceedings, IEEE International Symposium, Vol. 5, San Diego, CA, USA, 1013 May 1992, pp. 22202223. [ Links ]
[23] Inawashiro S., Miyake S., Ito M., "Spiking Neuron Models for RegularSpiking, Intrinsically Bursting, and FastSpiking Neurons", Proceedings 6th International Conference on Neural Information Processing, Vol. 1, 16-20 November 1999, pp. 3236. [ Links ]
[24] Daniel J. Amit, Modeling Brain Function, Cambridge University Press, New York, United States of America, 1989, pp. 1217, 375377. [ Links ]
[25] Gordon M. Shepherd, "Neurobiology", Oxford University Press, New York, United States of America, 1994, pp. 54, 8889. [ Links ]
[26] www.altera.com [ Links ]