Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
Resumen
CUEVAS-TELLO, J.C. et al. Parallel Approach for Time Series Analysis with General Regression Neural Networks. J. appl. res. technol [online]. 2012, vol.10, n.2, pp.162-179. ISSN 2448-6736.
La precisión para estimar retrasos en tiempo en series de tiempo muestreadas irregularmente es de gran importancia en astrofísica. Sin embargo, el tiempo computacional también es importante para el estudio de conjuntos de datos de gran tamaño. Este artículo primero presenta un nuevo método para estimar retrasos en tiempo, posteriormente se presenta una metodología basada en cómputo paralelo para estimar de manera rápida retrasos en tiempo. En ambos casos se utiliza una arquitectura de redes neuronales denominada regresión generalizada (General Regression Neural Networks - GRNN). Para el cómputo paralelo se utiliza MPI (Message Passing Interface) en un cluster tipo beowulf y en una supercomputadora Cray, también se utiliza el lenguaje CUDA™) (Compute Unified Device Architecture) para GPUs (Graphics Processing Units). Finalmente se demuestra empíricamente que con nuestra metodología se obtienen algoritmos rápidos para estimar retrasos en tiempo en conjuntos de datos de gran tamaño con la misma precisión que métodos que se usan en la actualidad.
Palabras llave : neural networks; time series; parallel algorithms; machine learning.