SciELO - Scientific Electronic Library Online

 
vol.10 número5Optimal Threshold Computing in Automatic Image Thresholding using Adaptive Particle Swarm OptimizationSensitivity Analysis of the Dynamic Behavior of a Salient-Pole Synchronous Machine Considering the Static Rotor Eccentricity Effect índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.5 Ciudad de México oct. 2012

 

An Optimal Transportation Schedule of Mobile Equipment

 

S. Guillén-Burguete1, H. Sánchez-Larios*2, J.G. Vázquez-Vázquez3

 

1 Instituto de Ingeniería, Universidad Nacional Autónoma de México, México, D. F., México.

2 Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, D. F., México. *herica.sanchez@ciencias.unam.mx.

3 Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México.

 

Abstract

Motivated by a problem faced by road construction companies, we develop a new model to obtain an optimal transportation schedule of mobile machines which have to travel to execute tasks. In this problem, each task is characterized by the location where it is to be executed, a work-content in terms of machine-time units, and one or more time intervals within which it can be performed. The machines can be transported from one location to another at any time, thus the problem has an indefinite number of variables. However, this indefinite number of variables can be reduced to a definite one because, as we prove, the problem has an optimal solution in which the arrivals of machines occur only at certain time instants. The objective is to minimize the total transportation cost such that all the tasks are executed within their time intervals. The constraints ensuring that the tasks are processed within their prescribed time intervals are nonlinear; nevertheless, due to the sets of the possible arrival times of the machines forming bounded convex polyhedra, our problem can be transformed into a mixed integer linear program by the same device used in the decomposition principle of Dantzig-Wolfe.

Keywords: transportation schedule, generalized linear programming, bounded convex polyhedron, work-content.

 

Resumen

Motivados por un problema que enfrentan las compañías de la construcción, desarrollamos un modelo nuevo para obtener un calendario óptimo del transporte de máquinas móviles que tienen que viajar para realizar tareas. En este problema, cada tarea está caracterizada por el lugar donde ésta tiene que ser realizada, una carga de trabajo en términos de tiempo-máquina, y uno o más intervalos de tiempo dentro de los cuales la tarea puede ser procesada. Las máquinas se pueden transportar desde un lugar hasta otro en cualquier momento, por lo tanto el problema tiene un número indefinido de variables. Sin embargo, este número indefinido de variables se puede reducir a uno definido porque, como se demuestra, el problema tiene una solución óptima en la que las llegadas de las máquinas ocurren solamente en ciertos momentos. El objetivo es minimizar el costo total de transporte tal que todas las tareas sean ejecutadas dentro de sus intervalos de tiempo. Las restricciones que aseguran que cada tarea sea procesada dentro de sus intervalos de tiempo prescritos son no lineales; sin embargo, debido a que los conjuntos de los posibles tiempos de llegada de las máquinas forman poliedros convexos acotados, nuestro problema puede transformarse en un programa lineal entero mixto por el mismo artificio usado en el principio de descomposición de Dantzig-Wolfe.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Averbakh, I., & Berman, O., A simple heuristic for m-machine flow-shop and its applications in routing-scheduling problems, Operations Research, Vol. 47, No. 1, 1999, pp. 165-170.         [ Links ]

[2] Averbakh, I., Berman, O., & Chernykh, I., The routing open-shop problem on a network: Complexity and approximation. European Journal of Operational Research, Vol. 173, 2006, pp. 531-539.         [ Links ]

[3] Bredström, D., & Rönnqvist, M., Combined vehicle routing and scheduling with temporal precedence and synchronization constraints, European Journal of Operational Research, Vol. 191, 2008, pp. 19-31.         [ Links ]

[4] Kek, A. G. H., Cheu, R. L., & Meng, Q., Distance-constrained capacitated vehicle routing problems with flexible assignment of start and end depots, Mathematical and Computer Modelling, Vol. 47, 2008, pp. 140-152.         [ Links ]

[5] Kim, B. I., Kim, S., & Sahoo, S., Waste collection vehicle routing problem with time windows, Computers and Operations Research, Vol. 33, 2006, pp. 3624-3642.         [ Links ]

[6] Desaulniers, G., Lavigne, J., & Soumis, F., Multi-depot vehicle scheduling problems with time windows and waiting costs, European Journal of Operational Research, Vol. 111, 1998, pp. 479-494.         [ Links ]

[7] Desrosiers, J., Dumas, Y., Solomon, M., & Soumis, F., Time constrained routing and scheduling, in Handbooks in operations research and management science. Vol. 8, Network routing, M. O. Ball, T.L. Magnanti, C. L. Monma, & G. L. Nemhauser Editors, Amsterdam: Elsevier, 1995, pp. 35-139.         [ Links ]

[8] Dantzig, G. B., Linear programming and extensions. New York: Princeton Univ. Press, 1963.         [ Links ]

[9] Lasdon, L. S., Optimization theory for large systems. New York: Dover Publications Inc. 2002.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons