Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.11 no.6 Ciudad de México dic. 2013
Microwave Energy for Expanding Perlite Ore
J. A. Aguilar-Garib*1,2, V. García-Onofre1, U. Ortiz1,2, Zarel Valdez-Nava1
1 Facultad de Ingeniería Mecánica y Eléctrica Universidad Autónoma de Nuevo León San Nicolás de los Garza, NL, México. *juan.aguilargb@uanl.edu.mx.
2 Centro de Investigación, Innovación y Desarrollo en Ciencia y Tecnología Universidad Autónoma de Nuevo León, Apodaca, NL, México.
ABSTRACT
Perlite is an igneous mineral composed by silicon, aluminum, oxygen and water. It can be expanded by heating it up at temperatures above 870 °C, then it becomes plastic, and the steam formed inside pressures out of the mineral. Maximum expansion is possible if the particles are heated up quickly, since the expansion degree strongly depends on the remaining water in the particles at the time that they reach the temperature where they become plastic. The typical expansion process consist in pouring the particles in rotary kilns operated with natural gas, but it is proposed in this research that the particles can be heated quickly with microwaves at 2.45 GHz. Particles of 0.08 cm and 0.018 cm of average diameter were expanded 10 to 20 times.
Keywords: Microwaves, perlite, expansion, heating.
RESUMEN
La perlita es un mineral ígneo compuesto de silicio, aluminio, oxígeno y agua. Se puede expander si se le calienta a más de 870 °C, entonces se vuelve plástica, y el vapor que se forma en el interior de las partículas de perlita presiona al mineral hacia afuera causando su expansión. La expansión máxima es posible cuando las partículas de perlita se calientan rápidamente, dado que el grado de expansión depende fuertemente de la cantidad de agua que aun esté presente en las partículas al momento que éstas alcanzan la temperatura en que se vuelven plásticas. El proceso de expansión típico consiste en vaciar las partículas en hornos rotatorios que operan con gas natural, pero en esta investigación se propone que las partículas pueden ser calentadas rápidamente con microondas de 2.45 GHz. Las partículas de perlita de 0.08 cm y de 0.018 cm de diámetro promedio se expandieron 10 a 20 veces.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] Basic facts about Perlite "The world's most versatile mineral", Technical data sheet / No. 2-4, 1983 (online), available from: www.perliteinstitute.com. [ Links ]
[2] M. Roulia et al.,"Influence of thermal treatment on the water release and the glassystructure of perlite", J Mater Sci, vol. 41 pp. 5870-5881, 2006. [ Links ]
[3] A. Klipfel et al., "Numerical simulation and experimental validation of the turbulent combustion and perlite expansion processes in an industrial perlite expansion furnace", Flow, Turbulence and Combustion, vol. 60, pp.283-300, 1998. [ Links ]
[4] Av. A. Varuzhanyan et al., "A mechanism of perlite expansion" Inorganic Materials, vol. 42, no 9, pp. 1039-1045, 2006. [ Links ]
[5] F. Kreith and M. Bohn Mark, "Principles of Heat Transfer", 6th edition, CL Engineering, 2000. [ Links ]
[6] D. L. Deborah, "Thermal Properties", Engineering Materials and Processes, Composite Materials, pp. 277-331, 2010. [ Links ]
[7] TERMOLITA Company Catalog (online), available from: http://www.termolita.com.mx/. [ Links ]
[8] Püschner Microwave System Short Technical notes (online), available from: http://www.pueschner.com/downloads/2011-08-DielectricKit4Vials_flyer.pdf [ Links ]
[9] W. Leong Eugene and M. Gupta, "Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering", Journal of the Microwave Power and Electromagnetic Energy, vol 44, no. 1, pp. 14-27, 2010. [ Links ]
[10] D. Agrawal et al., "Microwave energy applied to processing of high-temperature materials", American Ceramic Society Bulletin, vol. 87, no. 3, pp. 39-44, 2007. [ Links ]
[11] J. Aguilar et al., "Microwaves as an energy source for producing magnesia-alumina spinel", Journal of the Microwave Power and Electromagnetic Energy, vol. 32, no. 2, pp. 74-79, 1997. [ Links ]
[12] M Hotta et al., "Complex Permittivity of Graphite, Carbon Black and Coal Powders in the Ranges of X-band Frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz" ISIJ International, vol. 51, oo. 11, pp. 1766-1772, 2011. [ Links ]
[13] T. Yoshikawa and K. Morita, "Carbothermic Reduction of MgO by Microwave Irradiation", Materials Transactions, The Japan Institute of Metals, vol. 44, no. 4, pp. 722-726, 2003. [ Links ]
[14] J. Aguilar-Garib. "Thermal processing of materials", in S. Grundas, "Advances in induction and microwave heating of mineral and organic materials", pp. 243-258, INTECH 2011. [ Links ]
[15] J. Aguilar et al., "Comparison of microwave and conventional processing of Ni-Fe manganites". Materials Science and Technology MS & T2005, Pittsburgh, PA, USA, September 25-28, 2005. [ Links ]
[16] O. Kharissova and J. Cárdenas "Advance in methods of forming vertically aligned carbon nanotubes by microwave". Physica Status Solidi (c), vol. 2, no. 8, pp. 3063-3066, May 2005. [ Links ]
[17] I. Gomez et al., Comparative study of microwave and conventional processing of MgAl2O4 based materials. Ceramics International, vol. 30, no. 6, pp. 893-900, 2004. [ Links ]
[18] J. Aguilar et al., "Grafito como auxiliar térmico en el procesado de espinel MgAl2O4 mediante microondas" Ciencia UANL Universidad Autónoma de Nuevo León. vol. 3, no. 3, pp. 274-280, 2000. [ Links ]