SciELO - Scientific Electronic Library Online

 
vol.12 número3Software Agent Architecture for Managing Inter-Organizational CollaborationsPlacing Safety Stock in Logistic Networks under Guaranteed-Service Time Inventory Models: An Application to the Automotive Industry índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

Resumen

SANTOYO-MORALES, Juana E.  y  HASIMOTO-BELTRAN, Rogelio. Video Background Subtraction in Complex Environments. J. appl. res. technol [online]. 2014, vol.12, n.3, pp.527-537. ISSN 2448-6736.

Background subtraction models based on mixture of Gaussians have been extensively used for detecting objects in motion in a wide variety of computer vision applications. However, background subtraction modeling is still an open problem particularly in video scenes with drastic illumination changes and dynamic backgrounds (complex backgrounds). The purpose of the present work is focused on increasing the robustness of background subtraction models to complex environments. For this, we proposed the following enhancements: a) redefine the model distribution parameters involved in the detection of moving objects (distribution weight, mean and variance), b) improve pixel classification (background/foreground) and variable update mechanism by a new time-space dependent learning-rate parameter, and c) replace the pixel-based modeling currently used in the literature by a new space-time region-based model that eliminates the noise effect caused by drastic changes in illumination. Our proposed scheme can be implemented on any state of the art background subtraction scheme based on mixture of Gaussians to improve its resilient to complex backgrounds. Experimental results show excellent noise removal and object motion detection properties under complex environments.

Palabras llave : Background subtraction; Mixture of Gaussians; Expectation-Maximization Method.

        · resumen en Inglés     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons