Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.12 no.3 Ciudad de México jun. 2014
Video Background Subtraction in Complex Environments
Juana E. Santoyo-Morales and Rogelio Hasimoto-Beltrán
Centro de Investigación en Matemáticas-CIMAT, Jalisco s/n, Col. Mineral de Valenciana, Guanajuato, Gto., México 36240. {juanita,hasimoto}@cimat.mx
ABSTRACT
Background subtraction models based on mixture of Gaussians have been extensively used for detecting objects in motion in a wide variety of computer vision applications. However, background subtraction modeling is still an open problem particularly in video scenes with drastic illumination changes and dynamic backgrounds (complex backgrounds). The purpose of the present work is focused on increasing the robustness of background subtraction models to complex environments. For this, we proposed the following enhancements: a) redefine the model distribution parameters involved in the detection of moving objects (distribution weight, mean and variance), b) improve pixel classification (background/foreground) and variable update mechanism by a new time-space dependent learning-rate parameter, and c) replace the pixel-based modeling currently used in the literature by a new space-time region-based model that eliminates the noise effect caused by drastic changes in illumination. Our proposed scheme can be implemented on any state of the art background subtraction scheme based on mixture of Gaussians to improve its resilient to complex backgrounds. Experimental results show excellent noise removal and object motion detection properties under complex environments.
Keywords: Background subtraction, Mixture of Gaussians, Expectation-Maximization Method.
RESUMEN
Los modelos de substracción de fondo basados en mezcla de Gaussianas han sido ampliamente usados para la detección de objetos en movimiento en diversas aplicaciones de visión computacional. Sin embargo, la substracción de fondo sigue siendo un problema abierto, particularmente en escenas de video donde existen cambios drásticos de iluminación y fondo dinámico. El presente trabajo tiene por objetivo incrementar la robustez de los modelos de substracción de fondo en ambientes complejos, para esto se propone: a) redefinir los parámetros de la distribución de mezclas que afectan la detección de objetos en movimiento (peso, media y varianza de la distribución); b) mejorar la clasificación de pixels (fondo/objeto) y el mecanismo de actualización de las variables mediante la aplicación de un nuevo parámetro de velocidad de aprendizaje que depende de la historia temporal y espacial de los objetos en movimiento c) reemplazar el modelo de substracción de fondo a nivel de pixel usado actualmente por un modelo que cubre una región espacio-temporal para la eliminación de ruido causado por cambios drásticos de iluminación. Las propuestas pueden ser implementadas en cualquier esquema de sustracción de fondo basado en mezcla de Gaussianas para mejorar su respuesta en situaciones de fondos complejos. Resultados experimentales del modelo muestran su excelente capacidad para la eliminación de ruido y detección de objetos en movimiento en ambientes de fondo complejo.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, "Comparative study of background subtraction algorithms," J. Elec. imaging, 19(3):033003, 2010. [ Links ]
[2] V. Cheng and N. Kehtarnavaz, "A smart camera application: Dsp-based people detection and tracking," J. Elec. imaging, 9(3):336-346, 2000. [ Links ]
[3] T. Inaguma, H. Saji, and H. Nakatani, "Hand motion tracking based on a constraint of three-dimensional continuity," J. Elec. imaging, 14(1), 2005. [ Links ]
[4] D. Makris and T. Ellis, "Path detection in video surveillance," image and Vision Computing, 20:895903, 2002. [ Links ]
[5] J. W. Hsieh, "Automatic traffic surveillance system for vehicle tracking and classification," IEEE Transactions on intelligent Transportation Systems, 2(7):175-187, 2006. [ Links ]
[6] J. K. Aggarwal and M. S. Ryoo, "Human activity analysis: A review," ACM Computing Surveys, 43:16:116:43, April 2011. [ Links ]
[7] W. Hu, T. Tan, L. Wang, and S. Maybank, "A survey on visual surveillance of object motion and behaviors," Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 34 (3) (2004), pp. 334-352. [ Links ]
[8] C.R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, "Pfinder: Real-time tracking of the human body," IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):780-785, 1997. [ Links ]
[9] T. Horprasert, D. Harwood, and L.S. Davis, L., "A statistical approach for real-time robust background subtraction and shadow detection," 7th IEEE International Conference on computer Vision-ICCV99, 1999. [ Links ]
[10] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, "Background modeling and subtraction of dynamic scenes," 9th IEEE International Conference on Computer Vision-ICCV'03, 1305-1312, 2003. [ Links ]
[11] Mittal and N. Paragios, "Motion-based background subtraction using adaptive kernel density estimation," IEEE Computer Society Conference on Computer Vision and Pattern Recognition-CVPR'04, 2:302-309, 2004. [ Links ]
[12] L. Li, W. Huang, I. Y. H. Gu, and Q. Tian, "Statistical modeling of complex backgrounds for foreground objects detection," IEEE Transactions on Image Processing, 13(11):1459-1472, 2004. [ Links ]
[13] Ridder, O. Munkelt, and H. Kirchner, "Adaptive background estimation and foreground detection using kalman filtering," Proceedings of International Conference on Recent Advances in Mechatronics-ICRAM'95, pages 193-199, 1995. [ Links ]
[14] M. Piccardi and T. Jan, "Mean-shift background image modelling," International Conference on Image Processing-ICIP'04, 5:3399-3402, 2004. [ Links ]
[15] Han, D. Comaniciu and L. Davis, "Sequential Kernel Density Approximation through Mode Propagation: Applications to Background Modeling," Proc. Asian Conf. Computer Vision, 2004 [ Links ]
[16] Stauffer and W. Grimson, "Adaptive background mixture models for real time tracking," IEEE International Conference on Computer Vision and Pattern Recognition, 19:246-252, 1999. [ Links ]
[17] Y. Shen, W. Hu, J. Liu, M. Yang, B. Wei y C.T. Chou, "Efficient Background Subtraction for Real-time Tracking in Embedded Camera Networks," ACM Proceedings of the 11th international Conference on Information Processing in Sensor Networks-IPSN '12, pp. 103-104, 2012. [ Links ]
[18] D.S. Lee, "Effective Gaussian mixture learning for video background subtraction," IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):827-832, 2005. [ Links ]
[19] R. Tan, H. Huo, J. Qian, and T. Fang, "Traffic video segmentation using adaptive-k gaussian mixture model," S. B. Heidelberg, editor, "Advances in Machine Vision," Image Processing, and Pattern Analysis, Lecture Notes in Computer Science, 4153:125-134, 2006. [ Links ]
[20] S. Richardson and P. Green, "On Bayesian analysis of mixtures with an unknown number of components," Journal of the Royal Statistical Society, 60 (Series B):731-792, 1997. [ Links ]
[21] L.F. Teixeira, J.S. Cardoso, and L. Corte-Real, "Object segmentation using background modelling and cascaded change detection," Journal of Multimedia (JMM), 2:55-65, 2007. [ Links ]