SciELO - Scientific Electronic Library Online

 
vol.12 número6Fingerprint Recognition by Multi-objective Optimization PSO Hybrid with SVM índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.12 no.6 Ciudad de México dic. 2014

 

The Effect of Added Dead Space on Optimal Neuro-Muscular Drive and Respiratory Signals under Hypercapnia

 

S. L. Lin*1, H. C. Chang2 and C. Y. Huang3

 

1,2 Department of Automatic Control Engineering, Feng Chia University Taichung, Taiwan, R.O.C.

3 Office of Physical Education, Feng Chia University Taichung, Taiwan, R.O.C. *sllin@fcu.edu.tw

 

Abstract

The problem concerning the nature and the function of the dead space is of basic importance for the full comprehension of the respiratory physiology and pathophysiology. To study the effect of an imposed external dead space on the optimal respiratory control system, we simulated the optimal neuro-muscular drive and respiratory signals, including instantaneous airflow and lung volume profiles, with dead space loading under hypercapnia. The dead space measurement model by Gray was employed and the human respiratory control simulator based on an optimality hypothesis was implemented. The ventilatory control simulations were performed with external dead space loading of 0, 0.4 and 0.8 liters under rest condition (Pico2=0%) and CO2 inhalation of 3% to 7%. The optimization of the respiratory signals and model behavior of the optimal respiratory control under dead space loading and hypercapnia were verified and found to be in general agreement with experimental findings.

Keywords: Dead space, respiratory control, neuro-muscular drive, respiratory signal, hypercapnia.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This study was supported by grants NSC 101-2221-E-035-005 from the National Science Council, Taiwan.

 

References

[1] D. E. O'Donnell et al., "Pathophysiology of dyspnea in chronic obstructive pulmonary disease: a roundtable," Proc. Am. Thorac. Soc., vol.4, pp. 145-168, 2006.         [ Links ]

[2] D. Sajkov et al., "Management of dyspnea in advanced pulmonary arterial hypertension," Curr. Opin. Support Palliat. Care, vol. 4, pp. 76-84, 2010.         [ Links ]

[3] D. Jensen et al., "Effects of dead space loading on neuro-muscular and neuro-ventilatory coupling of the respiratory system during exercise in healthy adults: Implications for dyspnea and exercise tolerance," Respi. Physio. & Neuro., vol. 179, no. 2-3, pp. 219-226, 2011.         [ Links ]

[4] M. N. van der Plas et al., "Pulmonary endarterectomy improves dyspnea by the relief of dead space ventilation," Ann. Thorac. Surg., vol. 89, no. 2, pp. 347-352, 2010.         [ Links ]

[5] H. E. Wood et al., "Short-term modulation of the exercise ventilatory response in young men," J. Appl. Physiol., vol. 104, no. 1, pp. 244-252, 2008.         [ Links ]

[6] C. S. Poon, "The classic potentiation of exercise ventilatory response by increased dead space in humans is more than short-term modulation," J. Appl. Physiol., vol. 105, no. 1, pp. 390, 2008.         [ Links ]

[7] R. A. Klocke, "Dead space: simplicity to complexity," J. Appl. Physiol., vol. 100, no. 1, pp. 1-2, 2006.         [ Links ]

[8] W. S. Fowler, "Lung function studies. II. The respiratory dead space," Am. J. Appl. Physiol., vol. 154, no. 3, pp. 405-416, 1948.         [ Links ]

[9] J. R. Pappenheimer et al., "New experimental methods for determination of effective alveolar gas composition and respiratory dead space, in the anesthetized dog and in man," J. Appl. Physiol., vol. 4, no. 11, pp. 855-867, 1952.         [ Links ]

[10] R. L. Coon and J. P. Kampine, "Measurement of dead space ventilation using a pHa servo-controlled ventilator," J. Appl. Physiol., vol. 51, no. 1, pp. 154-159, 1981.         [ Links ]

[11] C. B. Wolff and R. C. Garratt, "Measurement of dead space ventilation," J. Appl. Physiol., vol. 53, no. 1, pp. 297-298, 1982.         [ Links ]

[12] R. Maruyama, "Comparison of ventilatory response between dead space and CO2 breathing in humans," Jpn. J. Physiol., vol. 38, no. 3, pp. 321-328, 1988.         [ Links ]

[13] F. Lofaso et al., "Respiratory response to positive and negative inspiratory pressure in human," Resp. Physiol., vol. 89, no. 1, pp. 75-88, 1992.         [ Links ]

[14] C. S. Poon, "Potentiation of exercise ventilatory response by airway CO2 and dead space loading," J. Appl. Physiol., vol. 73, no. 2, pp. 591-595, 1992.         [ Links ]

[15] M. Fathollah et al., "Developing a Conceptual Framework for Simulation Analysis in a Supply Chain Based on Common Platform," J. Appl. Res. Technol., vol. 7, no. 2, pp. 163-184, 2009.         [ Links ]

[16] A. Huerta-Barrientos et al., "Optimizing the Cellular Network Planning Process for In-Building Coverage using Simulation," J. Appl. Research Tech., vol. 11, no. 6, pp. 912-919, 2013.         [ Links ]

[17] S. L. Lin et al., "Modelling and simulation of respiratory control with LabVIEW," J. Med. Biol. Eng., vol. 32, no. 1, pp. 51-60, 2012.         [ Links ]

[18] S. L. Lin et al., "Optimal respiratory control simulation and comparative study of hypercapnic ventilatory responses to external dead space loading," J. Mech. Med. Biol., vol. 13, Oct., 2013.         [ Links ]

[19] J. R. Mendoza-Vázquez et al., "Simulation of a parallel mechanical elbow with 3 DOF," J. Appl. Research Tech., vol. 7, no. 2, pp. 113-123, 2009.         [ Links ]

[20] A. M. Hernandez et al., "Learning respiratory system function in BME studies by means of a virtual laboratory: RespiLab," IEEE Trans. on Educ., vol. 51, pp. 24-34, 2008.         [ Links ]

[21] C. S. Poon, "Ventilatory control in hypercapnia and exercise: optimization hypothesis," J. Appl. Physiol., vol. 62, no. 6, pp. 2447-2459, 1987.         [ Links ]

[22] C. S. Poon et al., "Optimization character of inspiratory neural drive," J. Appl. Physiol., vol. 72, no. 5, pp. 2005-2017, 1992.         [ Links ]

[23] C. S. Poon et al., "Homeostasis of exercise hyperpnea and optimal sensorimotor integration: The internal model paradigm," Resp. Physiol. Neurobi., vol. 159, no. 1, pp. 1-13, 2007.         [ Links ]

[24] M. Younes and W. Riddle, "A model for the relation between respiratory neural and mechanical outputs, I. Theory," J. Appl. Physiol., vol. 51, no. 4, pp. 963-977, 1981.         [ Links ]

[25] J. S. Gray et al., "Alveolar and total ventilation and the dead space problem," J. Appl. Physiol., vol. 9, no. 3, pp. 307-320, 1956.         [ Links ]

[26] N. R. Anthonisen and J. A. Fleetham, "Ventilation: Total, Alveolar, and Dead Space," in D. M. Pollock (eds), Handbook of Physiology: The Respiratory System Gas Exchange, Washington, Am. Physiol. Soc., 1987, pp. 113-129.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons