SciELO - Scientific Electronic Library Online

 
vol.39 número3Incidencia y efecto de la enfermedad “mano de chango” en la producción de 29 genotipos de maíz índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de fitopatología

versión On-line ISSN 2007-8080versión impresa ISSN 0185-3309

Rev. mex. fitopatol vol.39 no.3 Texcoco sep. 2021  Epub 13-Dic-2021

https://doi.org/10.18781/r.mex.fit.2106-4 

Phytopathological reports

CP-Tania 5, white maize variety horse’s tooth (Claviceps gigantea) resistant for Mexican highlands

Carlos De León-García de Alba1  * 

Alma Rosa Solano-Báez2 

Guillermo Márquez-Licona3 

Jesús Ricardo Sánchez-Pale4 

1 Fitopatología, Colegio de Postgraduados. Montecillo, Méx. Km. 36.5 Carretera México-Texcoco, CP. 56230, México.

2 Universidad Autónoma de Occidente, Unidad Regional Los Mochis, Departamento de Ciencias Biológicas, Boulevard. Macario Gaxiola y Carretera Internacional s/n, Los Mochis, Sinaloa, CP 81223, México.

3 Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Carretera Yautepec-Jojutla, Km. 6, Calle CeProBi No. 8, Colonia San Isidro, Yautepec, Morelos, CP 62731, México.

4 Facultad de ciencias Agrícolas, Universidad Autónoma del Estado de México, Cerritos, Toluca, Estado de México, México.


Abstract.

Colegio de Postgraduados, Campus Montecillo, has developed a new white endosperm synthetic maize variety with good agronomic characters and resistance to the “horse´s tooth” disease for highlands and transition zones of México. The “horse´s tooth” disease has only been reported in Mexico where it has distributed to several maize producing areas with high humidity and cool climate. The variety was developed by recombining 10 S1 lines generated from a genetically broad based white endosperm maize population improved following a S1 recurrent selection program. The lines obtained were selected for desirable agronomic characters after inoculating with macroconidia of the fungus and recombined. F1 seed of the experimental synthetic varieties was advanced to F2 and were planted in experimental agronomic trials from which the experimental synthetic variety CP-Tania 5 was selected. This synthetic variety offers grain yield that compites with the commercial hybrids, its seed is cheaper, can be panted for several cycles in stress conditions and can be distributed between farmers.

Key words: Synthetic variety; S1 recurrent selection

Resumen.

En el Colegio de Postgraduados se desarrolló la variedad sintética de maíz de grano blanco con buenas características agronómicas y resistencia al diente de caballo para zonas de transición y altiplano de México. C. gigantea ha sido reportado solo en México, sin embargo, se ha distribuido en zonas productoras de maíz en el altiplano y zonas de transición con clima fresco y alta humedad. La variedad se generó recombinando 10 líneas S1 generadas a partir de una población base de maíz con endospermo blanco y amplia base genética. La población se mejoró siguiendo un programa de selección recurrente en líneas S1. Las líneas obtenidas se seleccionaron después de inocular con macroconidios del hongo y las mejores se recombinaron para generar variedades sintéticas, entre las cuales la variedad CP-Tania 5 fue sobresaliente. Esta variedad sintética ofrece rendimiento de grano que compite con el de híbridos comerciales, la semilla es de menor costo, puede sembrarse por varios ciclos en condiciones limitantes y puede distribuirse entre agricultores.

Palabras clave: Variedad sintética; selección S1 recurrente

Horse’s tooth disease is caused by the teleomorphic state of the ascomycete Claviceps gigantea (Fuentes et al., 1964), with the Sphacelia sp. anamorphous stage which has a wide distribution under field conditions. The disease has only been reported in Mexico, initially in the Valley of Toluca, State of Mexico, and the Tarascan range in Pátzcuaro, Michoacán (Fuentes et al., 1964), but it has spread to locations in Puebla and Hidalgo (De León-García de Alba et al., 2017), in which high humidity conditions and low temperatures prevail. In these regions, in which hybrids and local varieties are established, all susceptible to the disease, losses of up to 100% of the grain production have been reported (Meléndez-Carbajal, 2015).

Figure 1 Horse’s tooth sclerotia in maize ears (A) and germination of C. gigantea sclerotia, where perithecia are formed, with ascospores (B). 

The disease originates when the mature maize grains infected by the fungus develop into sclerotia (Figure 1A), dormant structures to hibernate. During harvest, these sclerotia fall to the ground and remain in dormancy during the winter, to reactivate their metabolism with rains in the next planting season. When they reactivate, the sclerotia germinate, forming stipes (stems) with heads on the apex, where perithecia form, containing asci with ascospores (Figure 1B). These ascospores are the infectious structures of the fungus that penetrate the ear after infecting fresh stigmas. In their asexual phase, the sclerotia develop micro and macroconidia, which can also penetrate the ear, infecting the fresh stigmas (Moreno-Moreno, 2016).

As a part of the control of the disease, a breeding program was initiated to develop synthetic open-pollinated maize varieties with good agronomic characters and genetic resistance to the disease. Genetic resistance is considered the most efficient and cheapest way to control this and other crop diseases (Pandey and Gardner, 1992).

Breeding program. The breeding program to develop germplasm with desirable agronomic characters and genetic resistance to the horse’s tooth disease began with the formation of a maize population with white endosperm and a wide genetic base. This base population of white endosperm was formed by recombinaning in isolated plots, for two cycles, a total of 45 different types of maize collected in the highlands with desirable agronomic characters, including commercial hybrids, and improved and native varieties. The recombination plots were established in the field owned by a farmer in the ejido of Santa Teresa Tiloxtoc, in Valle de Bravo, State of Mexico (19° 13’ N, 100° 07’ W, 1880 masl, mean relative humidity of 65%). After the initial recombination (C0), a recurring selection program was initiated with S1 lines (Pandey and Gardner, 1992), by self-pollination of approximately 400 desirable plants in each selection cycle and producing S1 seed in each cycle. Seeds obtained from S1 plants were planted ear-to-row, in a nursery established in the Experimental Field of the Autonomous University of the State of Mexico, in El Cerrillo, Piedras Blancas, Toluca, State of Mexico (19º24´N, 99º41´W, 2660 masl), where the disease occurs naturally. Ears from the S1 families selected for agronomic characteristics were inoculated with an aqueous suspension of 100 000 macrospores mL-1 of the pathogen Sphacelia sp. obtained in a T2 medium (Pažoutová et al., 2004).

Approximately 33% of the S1 lines inoculated and selected for desirable agronomic characters and resistance to the disease were recombined to begin a new selection cycle from the base population. This population improvement process was continuous. At the same time, in each S1 evaluation cycle, groups of 10 to 12 lines with a specific desirable attribute, such as high grain yield, synchrony in male and female flowering, plant and ear heights, and resistance to the disease, were selected. These groups of lines were crossed in diallel to produce the F1 of new experimental synthetic varieties, which were advanced to F2 to be included in agronomic trials with other varieties obtained and commercial hybrids as checks, to measure their agronomic characters and grain yield.

Figure 2 Basic seed production plot for the synthetic maize variety CP-Tania 5. Montecillo, Edo. Méx. 2019. 

Table 1 Agronomic characters of the white synthetic maize variety CP-Tania 5 (Toluca, State of Mex ico 2017). (Second trial required by SNICS). 

Genealogía Origen CL-16 ASIz Índice altura Aspecto planta (1-5) No. mazorcas podridas Rendimiento (t ha -1)
Blanca 13 EV 3 0.95 a 0.52 a 1.2 a 0.7 a 8.6 a
Testigo BG1384W 0.96 a 0.49 ab 1.5 ab 0.7 a 8.7 a
Blanca 18 EV 2 0.96 a 0.48 ab 1.7 b 0.0 a 7.6 a
Blanca 7 EV 1 0.95 a 0.47 ab 1.9 b 0.7 a 7.5 b
Promedio 0.95 0.49 1.57 0.52 8.1
DMS (5%) 0.2 0.03 0.583 0.2 0.98
CV (%) 16.7 21.2 17.4 29.5 17.7

zAnthesis Sillking Interval.

In yield trials established with F2 seeds from experimental varieties obtained from lines of the C3-S1 cycle, the experimental variety Blanca 13 was selected for its outstanding characteristics over other genotypes included in the same trials (Table 1). In 2018, this selected variety was submitted for approval to the SNICS as a new variety called CP-Tania 5. The variety was approved and it was delivered to the Colegio de Postgraduados with the title of Breeder No. 2559, registered in the National Catalog of Plant Varieties-CNVV (MAZ-2179-210220) for its sale and distribution. In 2019, Basic seed of this variety was produced in the Experimental Field of the Colegio de Postgraduados in Montecillos, State of Mexico (Figure 2).

The maize synthetic variety CP-Tania 5 is high yielding (8.6 t ha-1), genetically resistant to horse’s tooth, low-cost and can be planted for several years. Incorporating this variety into production may lead to important benefits, such as the increase in the farmer’s income, due to the low cost of the seed and the increase in maize productivity, due to its high yield and resistance to the disease, avoiding the spread of the disease.

Literatura Citada

De León-García de Alba C, Solano-Báez AR y Sánchez-Pale JR. 2017. Identificación y desarrollo de cultivares de maíz con alto rendimiento y resistencia al diente de caballo del maíz (Claviceps gigantea Fuentes, De la Isla, Ullstrup y Rodríguez). Reporte de Proyecto a SENASICA. 8 p. [ Links ]

Fuentes SF, De la Isla ML, Ullstrup AJ and Rodríguez AE. 1964. Claviceps gigantea, a new pathogen of maize in México. Phytopathology 54(4): 379-381. [ Links ]

Meléndez-Carbajal B. 2015. Control biológico de Claviceps gigantea Fuentes et al. y Fusarium verticillioides (Sacc.) Niremberg con hongos antagonistas nativos del valle de Toluca, México, en condiciones in vitro. Tesis. Facultad de Ciencias Agrícolas. Universidad Autónoma del Estado de México. Campus El Cerrillo. Piedras Blancas, Municipio de Toluca, México. 82 p. [ Links ]

Moreno-Moreno CE, De León-García de Alba C, Nava DC and Sánchez-Pale JR. 2016. Germinación de esclerocios y formación de ascosporas de Claviceps gigantea Fuentes, De la Isla, Ullstrup y Rodríguez. Revista Mexicana de Fitopatología 34(3): 223-241 https://doi.org/10.18781/R.MEX.FIT.1603-2 [ Links ]

Pandey S and Gardner CO. 1992. Recurrent selection for population, variety, and hybrid improvement in tropical maize. Advances Agronomy 28: 1-87. [ Links ]

Pažoutová S, Kolarík M and Kolínská R. 2004. Pleomorphic conidiation in Claviceps. Mycological Research 108(2): 126-135. https://doi.org/10.1017/S0953756203009067 [ Links ]

Received: June 28, 2021; Accepted: August 03, 2021

*Autor para correspondencia: cdeleon@colpos.mx

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons